

Crowd Modelling in Collaborative Virtual Environments
Soraia R. Musse Christian Babski Tolga Çapin Daniel Thalmann

{soraia,babski,capin,thalmann}@lig.di.epfl.ch
Computer Graphics Lab. Swiss Federal Institute of Technology

EPFL, DI-LIG, CH 1015 Lausanne, Switzerland
+41 21 6935248

1. ABSTRACT
This paper presents a crowd modelling method
in Collaborative Virtual Environment (CVE)
which aims to create a sense of group presence
to provide a more realistic virtual world. An
adaptive display is also presented as a key
element to optimise the needed information to
keep an acceptable frame rate during crowd
visualisation. This system has been integrated
in the several CVE platforms which will be
presented at the end of this paper.

1.1 Keywords
Autonomous agents, virtual crowds, virtual environments.

2. INTRODUCTION
Virtual humans used as representatives of real
participants, or grouped together to form autonomous
crowds populating virtual worlds, allow for a much more
intuitive feeling of shared 3D worlds. However, they
generate a set of problems directly linked to the amount
of information that needs to be modelled, transmitted and
displayed. In this paper, we consider these problems and
their solutions at two different levels: virtual humans in
crowd modelling and the CVE platform itself. The first
level includes crowd modelling, which aims to provide
the sense of group presence through the crowd
behavioural animation; and the adaptive display
modelling, whose goal is to optimise the information to
be shared and displayed in order to maintain an acceptable
frame rate of crowd visualisation. The second level
includes the presentation of some CVE platforms and the
description of virtual humans and crowds integrated
[1].
This paper is structured as follows: In section 3, we
discuss information concerning the crowd model: group
behaviours, crowd control, etc. In section 4 we present the
Adaptive Display System. In section 5, we describe the
merging with some CVE platforms and results. Finally,
section 6 draws some conclusions.

3. CROWD MODEL
There are several approaches to model an autonomous
crowd, such as particle systems, flocking systems and
behavioural systems [14]. These different techniques are
characterised by the possible number of individuals to be
simulated, their intelligence level and decision ability, the
associated collision avoidance method, the employed
control method, etc. Particle systems have been used by
several authors to provide many autonomous agents
controlled by physical rules [4] [5]. Behavioural systems
consider the autonomous agent as an intelligent agent
which can make decisions using specific rules [13][18]
[16]. Flocking systems treat the crowd motion as a flock
problem, i.e. animation is specified in terms of distributed
global motion, and the individuals seek a goal, can walk
together with the others and at the same time they are able
to avoid collision [11] [10]. We have defined a crowd as a
set of groups formed by human agents. The crowd
behaviour is distributed among a number of groups, and
the individual behaviours obey this group specification.
The crowd motion is based on goals. Each group has a list
of goals to follow which is distributed in different ways to
the individuals. Our approach to crowd behaviour
represents an emergent behaviour, i.e. the global effects
which arise as a function of the local rules applied. The
data structure of our crowd model is presented in Figure
1.
Our crowd model aims at providing a way to populate
virtual worlds giving a realistic sense of autonomous
group presence. For instance, if we want to have a
population of one hundred individuals in a virtual world,
we can define a crowd formed by one hundred agents and
their crowd behaviour. However, if we could not use the
crowd model, we would need one hundred real participants
running at the same time and connected together with a
network to share the same environment.

Crowd Specifications

Groups Specification

Gr i Gr i+1 Gr i+2 Gr n

Distribution by groups

Distribution by individuals

Individuals Specification

Ag i

Ag ..

Ag .. Ag .. Ag ..

Ag .. Ag .. Ag n

Figure 1: The architecture of the CROWD model.

At a high information level, a crowd is treated as a single
entity formed by agent groups who have the following
specific behaviours (section 3.2):

Seek goal group ability to seek specific locations
Flocking group ability to walk together in a
 structured group movement
Safe- collision avoidance between agents
wandering and agents with obstacles
Following group ability to follow a group or a
 individual motion
Goal change the group behaviour can change as
 a function of the relationship between

individuals
Group control group ability to be controlled (can
 be autonomous or guided - see
 section 3.2.6.)
The simulation of these group’s behaviours is possible if
the crowd system knows the simulation environment, in
our case, the goals, interests points and obstacles
positions. In this case, the system is able to compute the
regions over which the group positions must be
distributed. In the next sections, we will describe how
these group behaviours have been defined and
implemented.

3.1 Crowd specification
3.1.1 Environment information
In order to simulate a crowd which interacts within a
specific environment, it is necessary to know some
environment information as well as the connection with
the geometrical environment. It aims at providing enough
data to the crowd system to be able to avoid collisions,
interact with objects, know some specific locations etc.
We have classified this information in two different types:
the goals (motion stimuli) represent the locations that
the crowd must go, pass through, do some action or not,
and the obstacle positions, used in collision avoidance.

There are two types of goals: interest points (IP) and
action points (AP). The first one represents a set of points
that the crowd must pass through. It is geometrically
defined as a position and a region where it is possible to
walk. Between two interest points, we can have one or
more paths (section 3.2.2). The following figure shows
the concept of interest points.

Region A

Region C
Region B

IP

IP

IP

Figure 2: Interest point (IP) information

(position + associated region).
The AP has more information than IP. An AP is defined by
the position, the region and the specification of whether
the agents should stop or not. When the agents must stop
on the AP, two additional specifications can be made:
vector orientation of the agent and an associated action. In
case the agents stop on the AP, the region is used to
compute average positions of members of the crowd to
reach that AP (section 3.2.2). The action associated must
be a keyframe sequence [3] which is a file that includes a
recorded posture sequence. After this, the agent goes to
the next stimulus (AP or IP).

Figure 3: A keyframe action.

The IP and AP region must be defined to permit implicit
collision avoidance with objects. For instance, a path
computed using IP/AP regions (such as walking on the
sidewalk) can implicitly avoid collision with a building.
Figure 4 illustrates the situation.

Figure 4: Implicit collision avoidance with the buildings

through the path computed using IP/AP regions.

In this case, we restricted the paths to the surface where
the agents can walk (following the IP and AP information).
The collision avoidance with objects outside this surface
is not considered.

3.1.2 The distribution of crowd information by
groups
The distribution of IP and AP among the groups which
form the crowd presents two different possibilities. The
first one is the total control by the user, i.e. the user can
choose those goals and interest points which will be the
stimuli of a specific group motion. In the second one, the
system can perform a simple type of motion planning by
using the proximity between goals to decide the next IP.
However, the paths always pass through the IP and arrive
on a randomly chosen AP.

Paths Automatic Reconstruction
Begin
 for each group g
 final_position = random(list_of_AP)
 initial_position = random(universe)
 path=BezierInterpolation(inital_position
 final_position)
 for each point pi of Bezier curve
 for each interest point pj
 if Near_distance(pi, pj)
 pi = pj
 pi_region = pj_region
End

The initial position for each group can be a random value
or be created near a specific AP/IP. After this process, the
user can define how many agents must be included in each
group of a crowd (this can also be randomly defined) and
if a sociological model [11] must be included in the
simulation or not. We have specified this sociological
model to create some social rules to describe the
relationship between the agents (section 3.2.1). In this
case, when one agent meets another, a number of social
effects can occur and, for example, one agent can follow
another one instead of following the group’s
specification. The emergent crowd behaviour can change
as a function of the above situations meaning that the
movement of a crowd can be different.

3.1.3 The distribution of group information by agents

Agents from the same group share the same list of AP/IP.
However, they cannot have the same physical position in
space due to collision avoidance. We have considered the
region specified through the AP/IP to create positions for
each agent.

Region

 IP

Sub-region 1 Sub-region 2

Sub-region 3 Sub-region 4

Figure 5: Distribution of AP/IP in sub-regions.

The region where the agents can be placed is subdivided in
four or more sub-regions depending on the region size.
The sub-region to be occupied considers the priority in
function of the proximity with the IP/AP and the density
of the sub-region. The physical positions inside the sub-
regions are randomly generated for each agent.
Individual position generation
Begin
 for each group g
 for each agent ai from group g
 sub-region =Priority(current_IP)
 position_agent ai = Random(sub-region_limits)
End
This process occurs when the individual paths are
computed.

3.2 Crowd Behaviours
In this section, some details of the defined crowd
behaviours will be described.

3.2.1 Relationship between individuals
There are three possibilities of relationship between the
agents in our model: i) two agents can evaluate their
positions and decide which one of them must change the
path to avoid the collision; ii) one agent can wait for
another delayed one, if they are part of a same group and
iii) one agent can meet another one and they can evaluate
their social parameters according to the social rules
defined in the sociological model [11]. In this last case,
the group and crowd behaviours can change.

3.2.2 Seek goals behaviour
The goals are positions in the universe of the simulation
that can be static or dynamic depending on the crowd
nature (autonomous or guided) (section 3.2.6). They can
be extracted from the environment (static goals), or
specified during the simulation (dynamic goals). Each
autonomous group has one list of static goals which can
be modified only when the sociological model is
included. Between two goals or interests points, the path
is calculated using the Linear interpolation (eq. 3.2.2.1) or

Bézier Curve (eq. 3.2.2.2) always restricted to a known
surface.

x = x(t) = (1 − t)a + tb; t ∈ℜ (eq.3.2.2.1)

where a and b define one straight line.

b i
r(t) = (1 − t)b i

r −1(t) + tb i+1
r−1 (t)

 (eq.3.2.2.2)

where {i=0,...,n −r
r=1,...,n

If the Bézier curve has some points outside the surface,
this curve can be recalculated to have all the points inside
as shown in the Figures 6 and 7. We used the convex hull
property of Casteljau Algorithm to prove that the Bézier
curve has all points inside the minmax boxes formed by
the minimal and maximal co-ordinates of the control
polygons [9]. Thus, this minmax boxes must be placed
inside the IP region to have a surface constrained.

Figures 6, 7: Bézier curve constrained to a surface defined

by the interest points/goals and distance vectors.

As the agents from the same group share the same list of
AP/IP, we computed for each individual one different
curve created through the random positions generated,
using the goals/IP regions as presented in the section
3.1.3. The paths for the different agents from the same
group can be similar but are never the same because they
can not occupy the same sub-region, as in Figure 8.

IP

IP

IP

IP

Figure 8: Family of Bézier curves to define the group paths.

3.2.3 Flocking behaviour
This behaviour is responsible for flocking formation
presented in some group motions in the real world, e.g.
flock of birds. In our case, we defined four rules to model
the flocking formation.
1. the agents from the same group share the same list of

goals;
2. they walk at the same speed;

3. they follow the paths generated as showed in section
3.2.2; and

4. one agent can wait for another when it arrives on a
goal and another agent from the same group is
missing.

Consequently, the agents from the same group walk
together. We considered it as an important characteristic
of our model, because in the real life the people also walk
in groups. To decide whether one agent must wait or not
for another (rule 4), it is necessary to evaluate if all agents
from the same group arrived on a specific goal. If not, the
agents which already arrived must wait.

3.2.4 Collision avoidance behaviour
In a previous work [11] we presented some simple ideas to
describe a multiresolution collision avoidance method in
which the complexity can change as a function of the
camera position. That means, if the camera is far from the
agents, the collision method can be simpler than when the
camera is near. We have included two different situations
in this collision avoidance method. The first one happens
when there are not so many individuals at the same time
and sharing the same universe region. We called this a low
density region. The second case happens when the
individuals are in a very populated region, i.e. they are very
near to one another. We called that a high density region.
Both cases are treated considering two different region
sizes for collision detection. Figure 9 shows this process.

a) b)

d

d

D

Figure 9: Examples of high and low density regions.

In case a), there is a high density region, the collision
detection occurs only when the individuals are within a
distance d to each other. Case b) represents a low density
region where the collision is detected within a distance D,
greater than d, thus earlier than in the previous case.

3.2.5 The following behaviour
This group behaviour provides the possibility to follow
one group or agent. In this case we have defined the
assumption of group goals which can be permanent or
temporary. Let be Group A, a group which follows Group
B. If the following motion is permanent, Group A adopts
the goals information of Group B until the end of
simulation. If this behaviour is temporary, Group A shares
the list of goals of Group B at some periods of the
simulation, in a randomly defined manner.

3.2.6 Crowd Control
There are two different control abstractions for a crowd.
The autonomous crowd, formed by autonomous agents
which follow the group specification (actions points,
interest points, group behaviours, etc.) and the guided
crowd; formed by autonomous agents which follow the
dynamic goals (section 3.2.6.1). We have used this feature
to define one avatar (visual representation of a real
participant) which has the control of one or more groups
of a crowd, in this case the avatar is considered as a
source of dynamic goals. We established a
communication between the dynamic goals and the
captured positions from the avatar, integrated in a CVE.
Figure 10 shows the visual representation of an avatar and
three autonomous agents which are following it. More
details about the avatar and the connection with CVE
platforms in section 5.

Figures 10: Three agents following one avatar.

3.2.6.1 Dynamic goals
As the crowd motion is always based on goals, we have
used the avatar’s position as a source of this type of
information. However, this is not exactly the same
information as presented in AP/IP (section 3.1.1) because
the avatar’s movement is represented just by dynamic
positions which change during the simulation. In the next
figure we can see a mixed crowd formed by one guided
group and one autonomous group. For the guided group
one channel is defined and must be shared by our system
and by the application, which is in turn responsible for the
motion control. For the autonomous group, the IP/AP
information must be informed in the beginning of the
simulation.

Channel
Group 1

Application

CROWD

Group 2

(guided group)

(autonomous)

List of IP
List of AP

Environment information

List of IP
List of AP

During the
simulation

Begining of
simulation

Figure 11: The information exchanges for the two nature

types of crowd.

4 ADAPTIVE DISPLAY
Dealing with virtual humans in shared 3D virtual
environments generates some specific problems which are
not present for classical objects used in 3D worlds. As
long as virtual humans are used to offer a realistic
representation for human user, the simulation should not
stop at the geometric level. If it is possible to have a
realistic human hierarchy (virtual skeleton), we should also
be able to use it for realistic animation, thus allowing to
use non-verbal communication within those virtual worlds.
But such body animation will generate a high amount of
information to be sent on the network to permit each
connected user to see “who is doing what”.
Without optimising this amount of information (at the
geometric level as well as the animation level), it will be
difficult to have a large amount of people connected
without slowing down the frame rate of each connected
client (because of the amount of geometric information to
display and the amount of information to communicate).

4.1 The Virtual Function
By performing a live and constant analysis of the 3D scene
in terms of complexity applied to several characteristics
such as textures, graphic representation of objects
(complexity), deformation and animation, applications
should be able to define a global level of detail that will
take in account all these parameters. By means of well
known methods such as considering the surface of the
projection of an object on the front view plane of a user,
we can imagine a virtual global level of detail function
which could be able to determine the right level of detail
for each characteristics according to the effect of one on
each other (Figure 12).
On the other hand, such a function should not use too many
resources. Indeed, it aims at effectively retrieving some
CPU power which will be available for keeping a good
frame rate. This kind of function should not take into
account static objects for which a simple level of detail on

the geometric representation is enough to be efficient. But
it can be very useful on animated objects or on an animated
group of animated objects : crowds.

0

5

10
Texture

Graph. Rep.

Deformation

Animation

LOD 0

LOD 1

LOD 2

LOD 3

LOD 4

Figure 12: Global Level of Detail function system.
The parameters of this virtual function are defined at a
different level. Some of these parameters, such as
geometric level of details, deformation or textures are
local to each user. Thus, the optimisation of these
parameters will not have a direct effect on network load,
but will only permit to keep, locally, an acceptable frame
rate. Other parameters like animation have implication
on the network load. The finest the animation will be
played (ideally 25 frames per second), the highest will
be the load of the network, load which will also increase
according to the number of participants connected to the
shared 3D world. It is one of the reason why we
developed this notion of crowd inside the CVEs platform
in order to be able to obtain populated world without the
need of a lot of users connected. Some specific
techniques to reduce the network use are described in
the following section.
4.2 Level of Detail
Level of details (lods) consist of defining several
resolutions of the same logical object, generally from the
highest to the lowest resolution. Then, according to a
distance or angular parameter, the application is able to
switch from one representation to the other, generally in
order to avoid having to display information which is not
visible anymore. This solution is applied at the level of
each participant. It will not avoid network overload but will
even participate to it. We have to keep in mind that using
lods means multiplying the memory needed to store a
logical 3D object by the number of lods. Thus, it increases
the time needed to load the entire scene and to send the
information to all participants (according to solution
adopted by CVEs platforms). This is mainly true for user
representation (avatar) which have to be sent to all other
participants each time a new user joins the ongoing session
but also for notion of private crowd imported inside the
shared 3D world by a participant.
For our bodies [2], we are able to define five different lods
which can be easily included in avatar definition files. But,
we have experienced that it is not useful to do so. Indeed,

the only point in including all lods is to obtain a smooth
transition from one lod to the other. But as long as
switching between lods is generally based on the distance
to the view point, it appears to be useless to have so much
details : further a given distance, the body is only a few
pixels high and users will not even be able to recognise a
human body. We conclude that a set of 3 lods is mainly
sufficient to obtain an acceptable visual result. We define a
high resolution and a low resolution for close and middle
range visualisation and, finally, a body reduced to bounding
box for long range (Figure 13). Even if this last resolution
seems to be a very rough one, its main advantage is that it
is still possible to animate it, which permits to keep the
ability of a non-verbal communication between users and
crowds, even if the distance that separates them is larger
than the classically short distance used for
communication.

Figure 13 : Highest to lowest resolution for a human body.
 Lod 0 Lod 4 Bounding Box

Polygons 20 424 14 646 96

Vertices 61 272 43 938 304
Figure 14 : Polygons -Vertices for different level of details.

The last level of details (bounding box) is of even greater
importance for crowds which can involve a non-negligible
number of bodies. The lowest level of detail is the
billboard. It is formed by a 2D plane which always faces the
user. An image representing the body in a given position is
mapped on this 2D plane and usually includes an alpha
channel to achieve a complete integration with the
environment. This mapped image can even be generated in
real-time which permits to map an image that corresponds
to the actual position of the body and offers to follow the
animation of the body even if the body is not represented by
a 3D model. Another possibility for billboards is to add
notion of angular lod : the mapped picture is depending on
the angle between the viewer and the logical object.

Figure 15: Combination of billboard and angular lod methods

in DIVE CVE.

4.3 Animation

Body animation can generate a high data flow that is likely
to overload the network. Applying the notion of level of
details and data compression on animation is a good way to
minimise network jams
4.3.1 Data Compression at CVEs level
With our bodies, we dispose of a set of seventy five joints
[2]. In order to achieve credible and natural movements, the
different parts of a virtual human body have to be animated
constantly, and each transformation will typically generate
a network message, i.e. numerous small network messages
that are sent very frequently. Animating crowds of virtual
humans have even greater implications on band-width since
each member of the crowd will be fully animated as
described above. CVEs, by performing a specific data
aggregation, can optimise network message. Basically, for
each segment of a body, an update message will be sent on
the network. As described in Figure 16, such a message
have to be encapsulated before to be sent, which means as
much specific protocol header as body parts to animate.
By developing a protocol dedicated to virtual human
animation, it is possible to avoid such a duplication of the
information for a body animation. Position update
messages can be melt in a single message containing all the
needed data to display the next frame (Figure 17). This
concatenation method can also be applied to a set of virtual
humans, typically a crowd, in order to obtain a better
optimisation of the size of the needed message. In a crowd,
some bodies can stay in the same position, or the same
position can be used for several bodies dispersed in the
crowd.

. . .1 2

Protocol
Header

Protocol
Header

Transformation
Joint 1

Transformation
Joint 2

Figure 16: Body animation performed by a series of network

messages, one for each joint transformation.

The resulting message can even be compressed by using
classical methods [17] [12] as long as the increased CPU
load for compressing the data is of little significance
compared to the reduction in band-width use and
transmission time.

. . .1 2

Protocol
Header

Transformation
Joint 1

Transformation
Joint 2

3 4

Transformation
Joint 3

Figure 17: Using message aggregation, animating a body from

one frame to the next one can result in a single packet.

Such a method supposes that the virtual human body (used
for real participant’s representation or for crowds) is not
treated as a classical 3D objects to display in the 3D scene.
By following standardisation process, like it is made by
VRML working group on humanoids [19], a body and his
joints can easily be retrieved in the 3D database in order to
apply to this object specific optimised methods for
animation (see next paragraph) and network
communication.

4.3.2 Level of Details on Animation
By applying a granularity factor on animation, instead of
playing an animation frame by frame and sending associated
data through the network to other participants, this
animation can be played each X frame. This granularity
factor has to be fixed before sending information, which
means that each client has to be aware of the network
situation. According to some metrics, each application can
decide the way they will send their own body animation in
order to avoid to charge a link which is already heavily
used. Such a system can permit a kind of autoregulation of
the network concerning the data linked to body animation.

5 CROWD SYSTEM INTEGRATION
The crowd system described in a previous chapter was
integrated to several CVE applications. The first one is
Virtual Life Network [6] [15] developed jointly by EPFL
and University of Geneva; and the second one is DIVE [7]
developed by SICS in Sweden. To be able to include crowds
model inside several CVEs, independently of the way they
were implemented, we developed an autonomous crowd
process which is able to connect to CVEs by using their
own EAI (External Application Interface) and a specific
shared memory segment. This shared memory segment will
permit to establish communication between the CVE and
the external crowd program.

5.1 Shared Memory System
The graph in Figure 18 describes the way UNIX shared
memory works. By using a key as an identification of a data
structure in the shared memory segment, it is even possible
to use several shared memory segments with the same
application.

Communication of the identification number from the CVE
application to the crowd controller can be done through
several different ways :
• CVE platform can launch itself the external process;
• User can launch manually the external process and
• CVE platform and external body controller can use

classical socket system (or UNIX signal utilities) to
first communicate automatically with each other.

CVE
Platform

External
Crowd

Controller

Standard Body
Definition

1 Loading

2 Shared Memory Allocation

Shared
Memory
Segment

3
Return Id
Number

4

Communicate
the Id Number

5
Link establishment

(body process connected to
main application)

Figure 18: Shared Memory System

The shared memory segment is organised in a structure
which group all data needed for the communication of
virtual humanoid’s animation. The communication system
is based on a system of flags to wake up the concerned
program when data have to be retrieved and updated.

5.2 VLNET Integration

VLNET is based on a client-server architecture [15]. The
protocol in VLNET consists of session management, state
and event information, and interaction among objects. We
use fixed-length PDUs, messages, to communicate
different information between the server and the clients.
Session management messages typically are used during
establishing connection with the server, and negotiating
between the client and the server. State messages represent
the updates to properties of the objects and participants in
the scene. There exists different types of state messages,
including:
• Move: Contains transformation matrix for the object or

the participant’s position, pick or view matrices.
• Joints: Contains the joints in the body
• Hand joints: contains the hand joints of the body
• Face_expression: contains the facial expression value.
Note that we use special messages for virtual human
figures, which contain joint information rather than
transformation matrices for body parts. This decreases the
bandwidth requirements from 28 Kbits/second required for
transmitting body part transformation matrices, to 6.4
Kbits/second for one body. We have shown that these joint-
based messages provide a balanced solution between
bandwidth requirements, and encoding and decoding

computations at the sender and receiver sites; and accuracy
loss.
For VLNET state messages, we use stateless protocol. That
is, the data contained in these messages are not dependent
on the previous packets, hence the latest message overrides
the previous ones. This allows to tolerate data loss,
performance differences among machines, latency and time
delay. Therefore, we can use UDP communication between
clients and the server. In the initial implementation, each
client controls a unique virtual human figure. The state of
the virtual body is communicated to the remote clients
through the joint type messages, and this compressed
message is used to update the virtual articulated
representation ready to be displayed. However, this is a
limiting factor for crowd simulation; a client needs to be
able to control more than one body. The architecture for
inserting crowds is based on the abstraction that the client
representing the crowd animates multiple bodies. When the
client containing the crowd joins a virtual world, all the
remote clients download the bodies for the crowd, and load
them. During the session, for each frame, the VLNET client
controlling the crowd sends a joint type message for each
body within the crowd.

VLNET
Server

VLNET
Client 1

VLNET
Client 2

VLNET
Client 3

Participant
1

Participant
2

External
Crowd Control

Body
Interface

Body
Interface

Body
Interface

Navigation
Interface

Navigation
Interface

Navigation
Interface

Figure 19: Example of an autonomous crowd in VLNET. The

crowd simulation program is visualised as a
client controlling multiple bodies.

Because VLNET is directly implemented on our libraries
[2], there's no need to import and to retrieve bodies from
the 3D database like it was done with DIVE (see section
5.3). Bodies are created on request, through libraries calls.
When a client connects to an ongoing session, a global
description of the body is sent through the network in terms
of physical characteristics, textures, etc.

Figure 20: Crowd in VLNET

5.3 DIVE Integration

DIVE is based on a peer-to-peer approach with no
centralised server, where peers communicate by reliable
and non-reliable multicast, based on IP multicast.
Conceptually, the shared state can be seen as a memory
shared over a network where a set of processes interact by
making concurrent accesses to the memory. To obtain
much more flexibility for crowd use, there are two ways of
inserting crowds inside the DIVE platform :

• by using the world definition file (with other classical
3D objects) loaded at the beginning of a shared session
and

• by using an additional file, defined by the user, and
loaded at any time of an on-going session.

It is possible to activate autonomous crowds which will be
guided by the definition of some interest points in the 3D
world, but also guided crowds which will follow the user
who created them. In order to insert virtual bodies inside a
classical scene file, the hierarchy of our bodies was
converted into the specific file format of the DIVE
platform. This means that we are able to retrieve joints
definition of the human skeleton and degrees of freedom,
which composed each joint, from the DIVE platform, in
order to be able to update their values and perform
animation. The file is analysed when it is loaded inside the
DIVE and information about crowds are retrieved by using a
set of rules to define name of 3D objects. It is possible to
distinguish a basic 3D object from an agent, part of a guided
or an autonomous crowd. The repartition of agents to
several crowds and the type of an agent (guided or
autonomous) is defined through a set of properties attached
to each of them. Using a similar set of rules for names and
properties, information about the 3D world like objects to
avoid or objects which will define points of interest for an
autonomous crowd, DIVE is able to define basic rules
which will determine the way crowds will interact with the
3D world. This system can be developed in order to define
more specific and intelligent behaviour for agents. It is
possible to enhance the knowledge of agents about the
surrounding world. If an agent stops in front of a painting,
according to the author, the agent can adopt different
attitudes. Once the DIVE platform has detected a set of
crowds (guided or autonomous), a segment of shared
memory is allocated which is local to the user who defined
crowds. The external crowd controller is launched and a
link to the previously allocated segment is established
(Figure 21).

Initialization

Dive
World

Shared Memory
Segment

External Crowd
Control

Crowd Agents and World
Information

(input - performed once for
each world)

Updating
Agents Position

(output)

Updating
Agents Position

(output)

Init. Info.
(input)

Dive
Platform

User defined Crowds
(Autonomous or guided)

At Any Time

Shared
World

Figure 21: Crowd Mechanism: crowds can be loaded at the

beginning of a session or at any time in the on-going session.

Both processes, the DIVE platform and the external
process, are then connected and are able to communicate
specific information for crowds. This link is local to the
user who imported crowds inside the 3D shared worlds, and
the communication performed through this link will not
increase the load of the classical network uses for DIVE
communication (Figure 22).

Local Host

Dive
Platform

Network

Dive
Platform

Dive
Platform

Network Connection

Network ConnectionNetwork Connection

Crowd
Controller

Crowd
Controller

Shared Memory Link

Shared Memory Link

Local Host - With Crowd

Local Host - With Crowd

Figure 22: Global Overview of DIVE System including crowd

controller.

Figures 23, 24: Museum Simulation inside DIVE CVE.

6. CONCLUSIONS
We have addressed in this paper two parts of a problem to
simulate crowds in CVEs: The first part concerns the
modelling level, meaning the crowd modelling and the
adaptive display methods. The second part presented the
integration between our crowd system and some specific
CVEs: VLNet and DIVE. The main goal of this paper was
to describe how this integration was done, considering the
presented methods, including transferred data, the
integration with avatar, the autonomous groups behaviours,
the kinds of possible control, etc. Through these
integration with others platforms, we have shown that our
crowd system has obtained good results mainly concerning
the transferred information because it is completely
independent. It is our opinion that several behaviours can
be included in the model to provide a more realistic
interaction with real participants. We are presently
working in this direction.

7. ACKNOWLEDGMENTS
The authors are grateful to Dr. Ronan Boulic. The research
was sponsored by the Swiss National Research Foundation,
the Federal Office of Education and Science in the
framework of the European project eRENA [8], FUNDEPE
and CAPES - Fundação Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior (Brazilian office of
Education and Science).

8. REFERENCES

[1] Benford, S. D.; Greenhalgh, C. M. and Lloyd, D.
“Crowded Collaborative Virtual Environments, Proc.
1997 ACM Conference on Human Factors in
Computing Systems (CHI’97), Atlanta, Georgia, US,
March 22-27, 1997.

[2] Boulic, R; Capin, T.; Huang, Z.; Kalra, P.;
Lintermann, B.; Magnenat-Thalmann, N.; Moccozet, L.;
Molet, T.; Pandzic, I.; Saar, K.; Schmitt, A.; Shen, J. and
Thalmann, D. "The HUMANOID Environment for
interactive Animation of Multiple Deformable Human
Characters". Proceedings of EUROGRAPHICS'95,
p.337-348 (Maastricht, The Netherlands, August 28
september, 1995).

[3] Boulic, R.; Huang, Z.; Thalmann. D. “Goal Oriented
Design and Correction of Articulated Figure Motion
with the TRACK System”. Journal od Computer and
Graphics, v.18, n.4, pp. 443-452, Pergamon Press,
October 1994.

[4] Bouvier, E.; Cohen E.; and Najman. L. "From crowd
simulation to airbag deployment: particle systems, a
new paradigm of simulation". Journal of Electronic
Imaging 6(1), 94-107 (January 1997).

[5] Brogan, D. and Hodgins, J. “Group Behaviors for
Systems with Significant Dynamics”. Autonomous
Robots, 4, 137-153. 1997.

[6] Capin, T.K.; Pandzic, I.S.; Noser, H.; Thalmann, N.;
Thalmann, D. "Virtual Human Representation and
Communication in VLNET Networked Virtual
Environments". IEEE Computer Graphics and
Applications, Special Issue on Multimedia Highways,
March 1997.

[7] DIVE - http://www.sics.se/dive/
[8] eRENA - http://www.nada.kth.se/erena/index.html
[9] Farin, G. Curves and Surfaces for Computer Aided

Geometric Design - A Practical Guide. 2nd ed.
Academic Press inc. 1990.

[10] Mataric, M. J. “Learning to Behave Socially, in D.
Cliff, P. Husbands, J.-A. Meyer & S.Wilson, eds,
From Animals to Animats: International Conference
on Simulation of Adaptive Behavior, pp.453-462.

[11] Musse, S.R. and Thalmann, D. A Model of Human
Crowd Behavior: Group Inter-Relationship and
Collision Detection Analysis. Proc Workshop of
Computer Animation and Simulation of
Eurographics’97, Sept, 1997. Budapest, Hungary.

[12] Nelson, M. and Gaily, J.L. “The Data Compression
Book”, MIS Press, 1996.

[13] Noser, H. Thalmann, D. The Animation of
Autonomous Actors Based on Production Rules,
Proc. Computer Animatio’96, 1996, Geneva,
Switzerland.

[14] Parent, R. “Computer Animation: Algorithms and
Techniques”,http://www.cis.ohiostate.edu/~parent/O
xfordPress.html.

[15] Pandzic, I.; Capin, T.; Lee, E.; Magnenat Thalmann, N.;
Thalmann, D. A Flexible Architecture for Virtual
Humans in Networked. Collaborative Virtual
Environments, Proceedings of EUROGRAPHICS '97.
(Budapest, Hungary, semptember, 1997).

[16] Reynolds, C. Flocks, Herds and Schools: A
Distributed Behavioral Model. Proc. SIGGRAPH’87,
Computer Graphics, v.21, n.4, July, 1987.

[17] Storer, J.A. Data compression: Methods and Theory,
Computer Science Press, 1988.

[18] Tu, X. and Terzopoulos, D. Artificial Fishes: Physics,
Locomotion, Perception, Behavior. Proc.
SIGGRAPH’94, Computer Graphics, July, 1994.

[19] VRML’97 - http://ece.uwaterloo.ca:80/~h-anim.

