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Abstract—In this paper, we present a formal model
of group discussion dyanmics. An understanding of the
face-to-face communications in a group discussion can
provide new clues about how humans collaborate to
accomplish complex tasks and how the collaboration
protocols can be learned. It can also help us to evaluate
and facilitate brainstorming sessions. We will discuss
the following three findings about the dynamics: Meet-
ings in different languages and on different topics could
follow the same form of dynamics; The functional roles
of the meeting participants could be better understood
by inspecting not only their individual speaking and
activity features but also their interactions with each
other; The outcome of a meeting could be predicted by
inspecting how its participants interact.

I. Introduction

THE focus of the paper is about the form of the group
discussion process in which participants in the group

present their opinions, argue on an issue, and try to reach
a consensus. The dynamics of group discussion depends
on the meeting participants’ tendencies to maximize the
outcome of the discussion. People “instinctively” know
how to cope with each other in many different common
situations to make an effective discussion. As a result, we
could expect some invariant structures from one discussion
to another, and could by just watching the discussion
dynamics answer the following four questions: (1) how the
opinions of the meeting participants differ from each other,
(2) what are the psychological profiles of the participants,
(3) how the discussion progress, and (4) whether the
discussion is effective. We do not concern ourselves with
the content of the discussion, and thus we cannot answer
questions concerning the content, yet we can still tell a lot
of things from the just the form (i.e., the container).

A. A Thought Experiment
Let us abstractly inspect by a thought experiment

an imaginary group discussion involving the participants
putting together their opinions on an open problem in
order to reach a consensus. The quantitative analysis
corresponding to the following description will be given
in the following sections.

A discussion is normally driven by one person at a
time, and it can be driven by different persons at different
times. The person who drives the discussion normally has

longer uninterrupted speaking time, steadier intonation
and speaking speed, and more attention from the other
persons who normally show their attentions by turning
their bodies to and looking at the speaker.

The persons who do not drive the discussion (listeners)
can from time to time and individually support the one
who drives the discussion (turn-taker) by briefly show-
ing their agreement or by briefly adding in supporting
materials to the turn-taker’s argument. The listeners can
sometimes request clarifications on the turn-taker’s argu-
ment, and the requested clarification can subsequently be
provided by either the turn-taker or the other listeners.

One or more listeners can infrequently show their dis-
agreement with the turn-taker’s opinion/argument and
initiate an “attack”, which may consequently pull more
listeners into the “battle”. The intensity of the battle is
indicated by the significantly less body/hand movement
of the person who initiate the attack, the significantly
more body/hand movement of the others in response of
the attack-initiator (who speak and turn to each other),
and the large number of simultaneous speakers.

The turn taker and a listener can from time to time
engage in a series of back-and-forth negotiation to fill the
gap between their understandings or opinions. If the ne-
gotiation takes too long, the other discussion participants
will jump in and terminate the negotiation. When the
turn-taker finishes his turn, he can either simply stops
speaking or explicitly hands over his turn to a listener, and
the next turn-taker will continue to drive the discussion
appropriately.

In many of the discussions, there is a distinctive Ori-
enteer, who has the “charisma” to drive the discussion
on when it comes into a halt or a chaos. The charisma
is reflected by the capability of the Orienteer to quickly
seize the attention of the others: When the Orienteer takes
on the orientation role, all other speakers quickly turn
their body towards the Orienteer, and the other existing
(normally multiple) speakers quickly stops speaking.

B. Influence Modeling

What we have just described can be expressed as an
“influence model”, in which each participant randomly
chooses to maintain his role (e.g., turn-taker, supporter,
attacker, Orienteer) for some duration or chooses to make
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a transition to another role depending on each other’s
roles: The duration that a turn-taker drives the discussion
depends among many factors on the option and arguments
of the turn-taker, his styles of him and the responses of the
other participants. When one person expresses his opinion
and arguments, the other persons normally listen to his
statement attentively and patiently, and they show their
agreements and doubts unobtrusively. The transition from
one turn-taker to another depends on how the latter’s
opinion is related to the former’s and how the latter wants
to drive the discussion. The way and the likelihood for a
participant to express his support, doubt or disagreement
depend both on his judgment about the importance of
making an utterance and on his personal style.

An observer who watches the group discussion dynam-
ics — the turn-takers at each time, the transitions of
the turns, the responses of the listeners and the dyadic
back-and-forth negotiations — can often get a precise
understanding of them (the testing data set) by pattern-
matching them with the past group discussion dynamics
(the training data set) stored in his memory. The reason
is that the multi-person face-to-face interactions normally
take on a small number of regular patterns among a huge
number of possibilities. For example, if each of the four
participants in a discussion can take one of the four roles
— protagonist, attacker, supporter and neutral, there will
be 44 = 256 role combinations. However, in an efficient
group discussion, only a few combinations exist most of
the time. A corollary of the regularity of face-to-face
interactions is that we can evaluate the effectiveness of
a group discussion by inspecting how likely its interaction
pattern is an efficient one.

Since the dynamics of a discussion is dependent on the
purpose of it, we can either imagine the characteristics of
an efficient discussion of a certain purpose, or compute the
characteristics based on simplified mathematical models
representative of the discussion purpose. We can also use
our intuition either to guide our experimental designs or
to help interpreting the experimental results. In specifics,
since we normally get a more comprehensive range of per-
spectives by listening to more people in an open problem
and since we can normally pay attention to a single person
at a time, we could imagine that most part of an effective
discussion is driven by a single person. Since discussing
a topic normally requires a considerable amount of set-
up time and summarizing time, we shouldn’t see frequent
transitions among topics. The topics can be separated
from each other by different amount of participation from
the individuals and different interaction dynamics. Since
a back-and-forth dyadic negotiation normally involves the
interests and attention of only two individuals, it shouldn’t
last long generally in an effective group discussion. Thus
the effectiveness of a group discussion could be studied
using stochastic process models and statistical learning
methods.

Different group-discussion purposes require different
types of dynamics, yet there are invariants in interpersonal
communications: The cognitive loads of individuals has

a statistical distribution; different types of turn-taking
dynamics statistically result in different performances
conditioned on the meeting purposes and the individ-
ual parameters; Similar kinds of group-discussion issues
such as blocking and social loafing [1], [2] may exist in
different types of discussions. As a result, while we use
the same stochastic model to fit all group-discussions,
different purposes may require different parameters. We
should take special care of the compatibility of two group
discussions when we fit a dynamic model to the former
with appropriate parameters and apply the fitted model
to the latter.

C. Plan for the Paper

The current paper models the group discussion dynam-
ics as interacting stochastic processes, with each process
representing a participant. The paper also identifies the
different functional roles that the participants take at each
time in a group discussion and evaluates the discussion
efficiency within the framework of the stochastic process.
The rest of the paper is organized in the following way. In
section II, we review the previous work in understanding
group dynamics, influences, meeting progression, and the
effectiveness of a meeting. The study on the non-verbal
aspects of a face-to-face group discussion is not a new
one, yet our approach gets better accuracy in estimat-
ing the participants’ functional roles and the discussion
outcome than the previous ones by taking into account
the interaction features. In Section III, we describe several
data sets and give our new results on their interaction
statistics. The statistics both motivate our new formu-
lation of influence and provide intuitions on why the
new formulation could give better estimation results. The
old and new formulations on influence are compared in
Section V. The estimation results on functional roles and
discussion outcomes are given and analyzed in Section
VI, and comparisons with our previous results are given
when the latter exist. We conclude this paper by briefly
describing the experiences and lessons we have learned in
our efforts to understand the non-verbal aspects of group
discussion, as well as future directions in our opinions.

II. Literature Review

Our main concern in this paper is the automated
recognition of the turn-taking dynamics in a discussion.
We hope to draw a connection between the turn-taking
dynamics on the one hand and the discussion performance
on the other hand. In this section, we will review the work
that we know of about the discussion dynamics and the
discussion performance.

Various approaches have been applied to detect the roles
in a news bulletin based on the distinctive characteristics
of those roles. Vinciarelli [3], [4] used Bayesian methods to
recognize the anchorman, the second anchorman, the guest
and the other roles based on how much they speak, when in
the bulletin they speak (beginning, middle, or end), and
after who they speak. The same social network analysis
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(SNA) idea was adopted by Weng et al. [5] to identify
the hero, the heroine, and their respective friends in three
movies based on the co-occurrences of roles in different
scenes. Barzilay et al. [6] exploited the keywords used by
the roles, the durations of the roles’ speaking turns and the
explicit speaker introduction segments in the identification
of the anchor, the journalists and the guest speakers in a
radio program.

Different meeting states and roles have been defined,
and their characteristics and estimation algorithms have
been studied: Banerjee and Rudnicky [7] defined three
meeting states (discussion, presentation and briefing) and
correspondingly four roles (discussion participators, pre-
senter, information provider, and information giver). They
subsequently used the C4.5 algorithm to estimate the
meeting states and the roles based on four features (num-
ber of speaker turns, number of participants spoken, num-
ber of overlaps, and average length of overlaps). McCowan
et al. [8] developed a statistical framework based on differ-
ent Hidden Markov Models to recognize the sequences of
group actions starting from audio-visual features concern-
ing individuals’ activities—e.g., “discussion”, as a group
action recognizable from the verbal activity of individuals.
Garg et al. [9] discussed the recognition of the project
manager, the marketing expert, the user interface expert
and the industrial designer in a simulated discussion on
the development of a new remote control. His recognizer is
based on when the participants speak and what keywords
the participants use.

Dominance detection aroused much interest perhaps
because the dominant person is believed to have large
influence on a meeting’s outcome. Rienks et al. [10], [11]
used various static and temporal models to estimate the
dominance of the participants in a meeting, and concluded
that the automated estimation is compatible with the
human estimation. The features they used include several
nonverbal — e.g., speaker turns, floor grabs, speaking
length — and verbal — e.g., number of spoken words used
by the next speaker — audio features retrieved from the
discussion transcription. Jayagopi et al. [12], [13], [14] ex-
tended the work of Rienks et al. and estimated dominance
using features directly computed from the audio and video
recordings — e.g., total speaking energy, total number of
times being unsuccessfully interrupted.

The historical work on social psychology, especially that
related to the structures and the performances of small
group discussions, provides useful observations, insights,
and challenges for us to work on with automated computer
algorithms. In particular: Conversation and discourse anal-
ysis provide helpful observations and examples [15], [16],
[17], [18], so that the features and structures of conversa-
tional group processes and be figured out by experiments
and simulations. Bales investigated the phases (e.g., giving
opinion, showing disagreements, asking for suggestion)
and the performances of group discussions, as well as the
different roles that the discussion participants play [19],
[20], [21]. McGrath on the other hand inspected meetings
based on their different tasks [22], [23]. The usefulness of

group brainstorming has been widely argued [24], [17], and
production blocking and social loafing have been identified
as two drawbacks of group brainstorming [1], [25], [26].
Hall [27] and Wilson [28] systematically analyzed their
respective group brainstorming experiments, and answered
why a group in their respective cases could outperform its
individuals.

The work related to the Mission Survival corpus that
we discuss in this paper includes the following. Identi-
fying functional relational roles (social and task roles)
were addressed by Zancanaro et al. [29], [30] through an
SVM that exploited speech activity (whether a participant
is speaking at a given time) and the fidgeting of each
participant in a time window. Dong [31] extended this
work by comparing SVM-based approach to HMM- and
IM-based approaches. Pianesi et al. [32] have exploited
social behavior to get at individual characteristics, such as
personality traits. The task consisted in a three-way clas-
sification (low, medium, high) of the participants’ levels
in extroversion and locus of control, using speech features
that are provably honest signals for social behavior, and
visual fidgeting features.

According to our knowledge, the current paper is the
first to discuss the features and the modeling issues of
the turn-taking behavior and the personal styles in an
unconstrained group discussion that can be extracted with
computer algorithms from the audio and video recordings.
The paper also gives our initial findings on the correlation
between the discussion turn-taking behavior and discus-
sion performance. Our discussion is based on Mission
Survival Corpus I. The difficulty in the current work is
that we are studying an unconstrained group discussion.
Thus there aren’t any pre-defined agenda and keywords
such as in a news bulletin to exploit, nor are there any
visual cues such as a whiteboard or a projector screen. A
person who is dominant in one part of a discussion may be
non-dominant in another part. We will nevertheless show
that, although the predefined macro-structure does not
exist in an unconstrained discussion, the micro-structures
at different parts of the discussion are based on the
instantaneous roles of the meeting participants, and the
statistics about the micro-structures are related to the
discussion performance.

The influence modeling that we use in this paper cap-
tures interactions and temporal coherence at the same
time, and it has a long history of development. The
coupled hidden Markov models was first development to
capture the interactions and temporal coherence of two
parts based on audio and visual features [33], [34], [35].
Asavathiratham introduced the influence model to study
the asymptotic behavior of many individual power plants
in a network [36], [37]. The approximation use by Asavathi-
ratham is that the probability measure of a power plant’s
state is a linear functional of the probability measures of
all power plants’ states in the network. The similar idea
was exploited by Saul and Boyen [38], [39]. Choudhurry
noted that individuals have their characteristic styles in
two-person face-to-face conversations, and the overall style
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of a two-person face-to-face conversation looks more like
the style of the more influential person. Choudhurry et
al. subsequently used the influence modeling to study the
structures of discussions and organizations [40], [41], [42].
Dong developed several versions of multi-agent dynamic
Bayesian networks using the same name which are better
fitted with the probability measures of group processes
[43], [44].

III. The Mission Survival Corpus I

For the experiments discussed in this paper, we have
used the Mission Survival Corpus [30], a multimodal anno-
tated corpus based on the audio and the video recordings
of eight meetings that took place in a lab setting appro-
priately equipped with cameras and microphones. Each
meeting consisted of four people engaged in the solution
of the “mission survival task”. This task is frequently used
in experimental and social psychology to elicit decision-
making processes in small groups. Originally designed by
National Aeronautics and Space Administration (NASA)
to train astronauts, the Survival Task proved to be a good
indicator of group decision making processes [27]. The
exercise consists in promoting group discussion by asking
participants to reach a consensus on how to survive in a
disaster scenario, like moon landing or a plane crash in
Canada. The group has to rank a number (usually 15) of
items according to their importance for crew members to
survive. In our setting, we used the plane crash version.
This consensus decision making scenario was chosen for
the purpose of meeting dynamics analysis mainly because
of the intensive engagement requested to groups in order
to reach a mutual agreement, thus offering the possibility
to observe a large set of social dynamics and attitudes. In
our setting, we retained the basic structure of the Survival
Task with minor adjustments: a) the task was competitive
across groups/team, with a price being awarded to the
group providing the best survival kit. b) the task was
collaborative and based on consensus within the group,
meaning that a participant’s proposal became part of the
common sorted list only if he/she managed to convince
the other of the validity of his/her proposal.

The recording equipment consisted of five FireWire
cameras—four placed on the four corners of the room
and one directly above the table— and four web cameras
installed on the walls surrounding the table. Speech ac-
tivity was recorded using four close-talk microphones, six
tabletop microphones and seven T-shaped microphone ar-
rays, each consisting of four omni-directional microphones
installed on the four walls in order to obtain an opti-
mal coverage of the environment for speaker localization
and tracking. Each session was automatically segmented
labeling the speech activity recorded by the close-talk
microphones every 330ms [45]. The fidgeting—the amount
of energy in a person’s body and hands—was automati-
cally tracked by using skin region features and temporal
motion [46]. The values of fidgeting for hands and body
were extracted for each participant and normalized on the
fidgeting activity of the person during the entire meeting.

Fig. 1. A picture of the experimental setting.

The Functional Role Coding Scheme (FRCS) was par-
tially inspired by Bales’ Interaction Process Analysis [20].
It consists of ten labels that identify the behavior of each
participant in two complementary areas: the Task Area,
which includes functional roles related to facilitation and
coordination tasks as well as to technical experience of
members; the Socio Emotional Area, which is concerned
with the relationships between group members and the
functional roles “oriented toward the functioning of the
group as a group”. Below we give a synthetic description of
the FRCS (for more information, see [30]. The Task Area
functional roles consist of: the Orienteer (o),who orients
the group by introducing the agenda, defining goals and
procedures, keeping the group focused and on track and
summarizing the most important arguments and the group
decisions; the Giver (g), who provides factual information
and answers to questions, states her beliefs and attitudes
about an idea, and expresses personal values and factual
information; the Seeker (s), who requests information, as
well as clarifications, to promote effective group decisions;
the Procedural Technician (pt), who uses the resources
available to the group, managing them for the sake of the
group; the follower (f), who just listens, without actively
participating in the interaction. The Socio-Emotional
functional roles consist of: the Attacker (a), who deflates
the status of others, expresses disapproval, and attacks the
group or the problem; the Gate-keeper (gk), who is the
group moderator, mediates the communicative relations,
encourages and facilitates the participation and regulates
the flow of communication; the Protagonist (p), who takes
the floor, driving the conversation, assuming a personal
perspective and asserting her authority; the Supporter
(su), who shows a cooperative attitude demonstrating un-
derstanding, attention and acceptance as well as providing
technical and relational support; the Neutral Role (n),
played by those who passively accept the ideas of the
others, serving as an audience in group discussion. Of
course, participants may—and often do—play different
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roles during the meeting, but at a given time each of them
plays exactly one role in the Task Area and one role in
the Socio-Emotional one. The FCRS was showed to have
a high inter-rater reliability (Cohen’s statistics κ = 0.70
for the Task Area; κ = 0.60 for the Socio-Emotional Area).

IV. Social Signals

An individual in a group discussion has his characteristic
style on the frequency, the durations and the functional
(i.e., task and socio-emotional) roles of his speaking turns.
In Mission Survival Corpus I, some individuals take certain
functional roles consistently often, while some other indi-
viduals take these roles consistently rarely. The functional
roles have their respective characteristics, durations in
particular, and interactions with other functional roles,
independent of who take them. As a result, the functional
roles of a speaker turn can be inferred from the character-
istics of the turn and the characteristics of the turn taker.

Fig.2 gives the decision trees that tell a meeting partici-
pant’s functional roles at a specified moment only from the
amounts of time he speaks in the time windows of different
sizes around the moment. The C4.5 algorithm is used to
generate the decision trees from four discussions of Mis-
sion Survival Corpus I as training data, and it correctly
captures the characteristics of the functional roles: An
information giver speaks more than an information seeker
in a short time window, a protagonist speaks more than a
supporter in a long time window, and a neutral role (i.e.,
a listener or a follower) speaks much less than the other
roles in time windows of up to several minutes. The C4.5
algorithm, like many other modern statistical learning
algorithms, is guarded against overfitting by a mechanism.
The trained decisions trees can attain an accuracy of
around 55%. (As a comparison, the inter-rater reliability
has Cohen’s statistics k = .70 for the Task Area and κ =
0.60 for the Socio-Emotional area.) Further accuracy can
be achieved by considering the speaker characteristics and
more functional role characteristics: Since the participant
who spends more time in giving information often spends
more time in seeking information (R2 = .27, F = 12.4 on
1 and 30 degrees of freedom, p = .0014), the total amount
of time that a participant has spent in giving information
can be used to determine whether a short speaking turn
of his corresponds to a seeker role or a neutral role; Due
to the way that an auxiliary role such as seeker/supporter
and a major role such as giver/protagonist co-occur, the
amounts of speaking time of a participant in time windows
of different sizes can be contrasted with those of the other
participants to disambiguate the roles of the participant;
Since an attacker is relatively quiet by himself and arouses
significant agitation from the others, and since a neutral
role is often less paid attention to, the intensities of
hand/body movements can be taken as the characteristics
of those roles.

The current section is organized into two subsections.
In Subsection IV-A, we analyze the durations of each
functional roles and the likelihood that different functional
roles co-occur. In Subsection IV-B, we analyze who is more

spk.10< 0.25

spk.280< 0.6196

spk.20>=0.425

spk.10>=0.25

spk.280>=0.6196

spk.20< 0.425
n

17/375/11/99

g
301/58/222/85

s
121/116/71/266

o
21/5/280/0

Error :  0.564   CV Error :  0.64   SE :  0.0154
Missclass rates : Null =  0.715  : Model =  0.403  : CV =  0.458

spk.10< 0.2833

spk.50< 0.37

spk.10>=0.2833

spk.50>=0.37

n
25/487/20/90

s
72/137/69/260
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10/106/419/353

Error :  0.669   CV Error :  0.679   SE :  0.017
Missclass rates : Null =  0.644  : Model =  0.431  : CV =  0.437

(a) Task roles. (b) Socio-Emotional roles.

Fig. 2. Decision trees trained with the C4.5 algorithm for functional
role detection: If a person takes the Neutral/Follower role at a
moment, he speaks noticeably less in the 10-second window around
the moment; The Giver speaks more than the Seeker in a 20-second
window; The Protagonist speaks more than the Supporter in a 50-
second window; The Orienteer on average speaks 62% of time in a
280-second window; The speaking/non-speaking signal seems to be
insufficient to detect Attacker.

likely to take which roles from their individual honest
signals.

A. Turn-taking behavior
The patterns in the functional roles, social signaling

and turn taking behavior, and their relations are given
as follows. Any effective heuristics and statistical learning
methods that model the group discussion behavior should
exploit these patterns.

We will first inspect the (Task Area and Socio-
Emotional Area) role assignments of the subjects in Mis-
sion Survival Corpus I. The role assignments reflect how
the observers understand the group processes.

Table I gives the durations in seconds of social roles, task
roles and their combinations. In this table, an instance of
a supporter role has a significantly less average duration
than that of a protagonist role (15 vs. 26). This coincides
with the fact that a protagonist is the main role to
drive the conversation and a supporter takes a secondary
importance. An attacker role takes an average duration
of 9 seconds, which is equivalent to 10˜20 words and
around one sentence assuming conversations are around
100˜200 words per minute. This reflects a person’s strategy
to show his contrasting ideas concisely, so that he can
make constructive utterances and avoid conflicts at the
same time. A person asks questions (when he takes an
information-seeker’s role) more shortly than he provides
information (when he takes an information-giver’s role).
This reflects our natural tendency to make task-oriented
discussions more information-rich and productive. A pro-
tagonist role is on average 37% longer. This indicates the
fact that the social roles happen on a different time scale
compared with the task roles, and they are not totally
correlated statistically: A discussion is normally driven
by one person and thus has a single protagonist at a
time. The protagonist can ask another person questions,
and the latter generally gives the requested information
briefly, avoiding assuming the speaker’s role for too long.
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TABLE I
Durations in seconds of social roles, task roles and their
combinations. Each table entry µ(σ) gives the mean and

standard deviation for a specific case.

µ(σ) a n p s marginal

g 8(6) 10(16) 23(24) 11(7) 19(20)
n 2(2) 52(79) 4(6) 5(5) 34(45)
o N/A 4(8) 10(9) 18(16) 17(14)
s 7(4) 6(4) 9(7) 10(5) 9(5)

marginal 9(4) 56(85) 26(27) 15(14) 7(50)

TABLE II
Number of instances and amount of time in seconds that a
person takes a task role, a social-role and a task/social

role combo.

a n p s total

g 5(39) 316(3k) 233(5k) 112(1k) 666(9k)
n 9(22) 426(22k) 185(747) 147(718) 767(24k)
o 0(0) 67(323) 21(432) 53(1k) 141(2k)
s 5(36) 74(471) 27(253) 17(170) 123(930)

total 19(97) 883(26k) 466(6k) 329(3k) 1697(36k)

The protagonist can seldom be interrupted by questions,
and the questioner generally seeks additional information
in a brief and collaborative way. The durations of the
neutral roles in the task role “dimension” and the social
role “dimension” are less than twice the durations of the
giver’s role and the protagonist’s role respectively. This
indicates that the participants do not passively listen when
they take listeners’ roles.

Table II shows the number of speaking-turns and the
amount of time that the meeting participants take dif-
ferent task roles, social roles and combinations of task
and social roles. This table complements Table I on how
individual participants take different functional roles in
a discussion. The group process can also be viewed as a
Markov process with different distributions of functional
roles at different time: In Mission Survival Corpus I, the
configuration 1g3n0o0s, which denotes the configuration of
the discussion with 1 Giver, 3 Neutrals, 0 Orienteer, and
0 Seeker, takes 36% discussion time, and the configura-
tions 2g2n0o0s, 0g3n1o0s, 0g4n0o0s, 1g2n0o1s, 3g1n0o0s,
1g2n1o0s, 0g3n0o1s and 2g1n0o1s take 20%, 13%, 11%,
5%, 5%, 4%, 2% and 1% discussion time respectively.
In the same data set, the different socio-emotional role
distributions 0a3n1p0s, 0a4n0p0s, 0a3n0p1s, 0a2n2p0s,
0a2n1p1s, 0a2n0p2s, 0a1n2p1s, 0a1n3p0s and 0a1n1p2s
take 36%, 21%, 18%, 11%, 7%, 3%, 1%, 1% and 1%
discussion time respectively. Each different role distribu-
tion tends to last for some duration. Considering a group
process in terms of role distribution makes the group
process model speaker-independent, and thus effectively
compresses the number of states of the group process.
Since we can model a group process in a better way in
terms of “influence”, we will not discuss the distribution of
roles any further.

We will proceed to analyze the turn-taking behavior, the
body movements, and the hand movements corresponding
to different roles. The analysis will show that the roles

TABLE III
Average percentage of speaking time in 10-second windows
(spk) around different social roles and task roles, average
body movement (bdy) and hand movement (hnd) of the self

(self) and the others (othr) in the 10-second windows
around the shifts into different social roles. Each table
entry µ(σ) gives the mean and standard deviation for a

feature-role combination.

µ(σ)
Social-Emotional Area Roles

Attacker Neutral Protagonist Supporter

fe
a
tu

re
s

self spk .47(.16) .20(.21) .62(.21) .54(.21)
othr spk .30(.09) .32(.12) .25(.14) .25(.15)
self hnd 11(14) 18(21) 18(21) 16(19)
othr hnd 20(14) 16(13) 19(14) 17(12)
self bdy 11(19) 20(22) 21(22) 18(20)
othr bdy 23(14) 19(14) 22(14) 19(14)

µ(σ)
Task Area roles

Giver Follower Orienteer Seeker

fe
a
tu

re
s

self spk .58(.21) .16(.18) .62(.21) .41(.19)
othr spk .25(.14) .33(.12) .23(.14) .30(.12)
self hnd 17(21) 18(20) 17(20) 15(17)
othr hnd 19(14) 16(13) 18(12) 18(14)
self bdy 19(22) 20(22) 20(20) 18(21)
othr bdy 21(14) 18(13) 21(14) 19(14)

reflect a set of essential features of the group processes,
rather than being artificially imposed to the group pro-
cesses.

In a discussion involving multiple persons, the indi-
viduals normally orient their bodies to the locus of the
discussion, which can be the protagonist or the informa-
tion giver. On the other hand, the protagonist and the
information giver normally make non-verbal communica-
tions with the listeners by turning his body to them.
The attention shifts consist of a significant fraction of
hand and body movement. In the mission survival data
set, the correlation between the change-of-speaker and the
body/hand movement intensity is greater than 0.50.

Table III shows how the meeting participants execute
their Task Area Roles and Socio-Emotional Area Roles
in terms of how much to speak and to whom should
the attentions be given. While the patterns are weak
and might not be sufficient for constructing good role
classifiers, they nevertheless exist and coincide with our
intuition: An attacker provokes a significant amount of
attention, hand movements and body movements from
the others, while he shows significant less hand and body
movements. The neutral roles, the supporter role and the
seeker role attract less average attention from the others
compared with the giver role and the protagonist role.
In the 10 second window when a person takes either a
supporter role or a seeker role, he has less hand and body
movements. This may be due to the fact that he has
already paid attention to the locus of the discussion when
he takes those roles. When a person takes an Orienteer
role, on average only 23% of the time in the 10-second
window do the other three participants speak, and the
Orienteer speaks 62% of the time in this window. This
indicates that the one task of an Orienteer is to keep the
brainstorming in track.

Table IV shows how the meeting participants shift their
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TABLE IV
Distribution of social roles and task roles conditioned on

number of simultaneous speakers.

Socio-Emotional Area Roles
Attacker Neutral Protagonist Supporter

P
#

.
o
f
sp

k
s 0 .001 .817 .104 .078 15k(1.0)

1 .002 .740 .177 .081 60k(1.0)
2 .004 .680 .220 .096 26k(1.0)
3 .005 .620 .238 .137 6k(1.0)
4 .008 .581 .305 .107 656(1.0)P

293 78k 19k 9k 11k

Task Area Roles
Giver Follower Orienteer Seeker

P

#
.
o
f
sp

k
s 0 .162 .777 .043 .018 15k(1.0)

1 .251 .675 .049 .025 60k(1.0)
2 .325 .591 .054 .031 26k(1.0)
3 .358 .536 .070 .037 6k(1.0)
4 .329 .572 .076 .023 656(1.0)P

28k 71k 5k 3k 11k

roles as a function of the number of simultaneous speakers.
We intuitively view the number of simultaneous speakers
as an indicator of the intensiveness of a discussion. The ta-
bles indicate that for 80% time in Mission Survival Corpus
I, there are only from one to two simultaneous speakers,
less than .22×4 = .88 protagonist (who drives the meeting)
and from .251 × 4 = 1.004 to .325 × 4 = 1.3 information-
givers . This is determined by the participants’ mental
loads and their conscious or subconscious attempts to
increase the efficiency of the discussions. On the other
hand, the fraction of the secondary roles, such as attackers,
increases significantly.

We note that the statistical learning theory does not
guarantee the learnability of features, and thus we cannot
treat a statistical learning method as a magical black box
that takes training data as input and generate working
models about the training data. What the theory provides
is instead mathematically rigor ways to avoid overfitting
in statistical learning. As a result, our introspection into
how we solve problems by ourselves and attain efficiency
provides good intuitions on how our individual and collec-
tive mental processes can be “learned” and simulated by
machines.

B. Individual Honest Signals
In this section, we introduce the individual honest sig-

nals, their relationships to role-taking tendencies, their
relevance with the roles, and their correlations.

1) Speech Features : Existing works suggests that
speech can be very informative about social behavior.
For instance, Pentland [47] singled out four classes of
speech features for one-minute windows (emphasis, activ-
ity, mimicry and influence), and showed that those classes
are informative of social behavior and can be used to
predict it. In Pentland’s [47] view, these four classes of
features are honest signals, “behaviors that are sufficiently
hard to fake that they can form the basis for a reliable
channel of communication”. To these four classes, we add
spectral center, which has been reported to be related to
dominance [10].

Emphasis is usually considered a signal of how strong
is the speaker’s motivation. In particular, its consistency
is a signal of mental focus, while its variability points at
openness to influence from other people. The features for
determining emphasis consistency are related to the
variations in spectral properties and prosody of speech:
the less the variations, the higher consistency. The relevant
features are: (1) confidence in formant frequency, (2)
spectral entropy, (3) number of autocorrelation peaks, (4)
time derivative of energy in frame, (5) entropy of speaking
lengths, and (6) entropy of pause lengths.

The features for determining the spectral center are
(7) formant frequency, (8) value of largest autocorrelation
peak, and (9) location of largest autocorrelation peak.

Activity (=conversational activity level) is usually a
good indicator of interest and engagement. The relevant
features concern the voicing and speech patterns related
to prosody: (10) energy in frame, (11) length of voiced
segment, (12) length of speaking segment, (13) fraction
of time speaking, (14) voicing rate (=number of voiced
regions per second speaking).

Mimicry allows keeping track of multi-lateral interac-
tions in speech patterns can be accounted for by mea-
suring. It is measured through (15) the number of short
reciprocal speech segments, (such as the utterances of
‘OK?’, ‘OK!’, ‘done?’, ‘yup.’).

Finally, influence, the amount of influence each person
has on another one in a social interaction, was measured by
calculating the overlapping speech segments (a measure of
dominance). It can also serve as an indicator of attention,
since the maintenance of an appropriate conversational
pattern requires attention.

For the analysis discussed below, we used windows of
one minute length. Earlier works [47], in fact, suggested
that this sample size is large enough to compute the speech
features in a reliable way, while being small enough to
capture the transient nature of social behavior.

2) Body Gestures : Body gestures have been success-
fully used to predict social and task roles [31]. We use them
as baselines to compare the import of speech features for
socio and task roles prediction. We considered two visual
features: (17) hand fidgeting and (18) body fidgeting.
The fidgeting—the amount of energy in a person’s body
and hands—was automatically tracked by using the MHI
(Motion History Image) techniques, which exploit skin
region features and temporal motion to detect repetitive
motions in the images and associate them to an energy
value in such a way that the higher the value, the more
pronounced is the motion [46]. These visual features were
first extracted and tracked for each frame at a frequency
of three hertz and then averaged out over the one-minute
window.

3) Relationship between honest signals and role-taking
tendencies: We note that different people have different
yet consistent styles in taking functional roles, and their
styles are reflected in their honest signals.

We compared the frequencies that the 32 subjects (eight
sessions times four persons per session) take each of the
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eight functional roles (four task roles and four socio-
emotional roles) in the first half of their respective dis-
cussions with those in the second half, taking the fact
that it is hard to collect a data set in which the same
persons participant in many different types of discussions.
The frequencies of people in taking the Neutral/Follower
roles, the Giver role, the Protagonist role, the Supporter
role and the Seeker role in the first half of their discus-
sions are predictive of the frequencies in the second half
(R2 ≥ .8, p < .001). As a comparison, we compared the
frequencies in the first half with those in the second half
but randomly permuted (within discussion groups and
within the whole data set). The permutations destroy both
the correlations and the normality (R2 ≤ .1, p ≥ .3). The
consistencies of taking the other roles in both half of the
discussions are weaker, but they nevertheless exist.

We proceed to test the hypotheses that the frequencies
of taking different roles are linearly dependent on the
honest signals with normal random noise. It turns out
that the rate that a person takes the Seeker role is
linearly dependent on his rate of short speaking segments
(R2 = .47, p = .006), the rate of taking the Supporter
role is linearly dependent on the fraction of speaking and
the fraction of voicing (R2 ≥ .46, p ≤ .007), and the
rates of taking the Giver role, the Protagonist role and
the Neutral/Follower roles are linearly dependent on most
of the honest signals in the activity category.

4) Relevance of the features for different roles : We
computed the means and variances of the features’ dis-
tributions for each social and task role. For simplicity
the distributions were assumed to be in the Gaussian
family. Given that the sample spaces of some of the fea-
tures are bounded, the support of the distributions should
be bounded too; we obtained this result by restricting
the support and normalizing the distribution. Using the
distributions, we analyzed the importance of the various
features by means of the misclassification error.

We define the misclassification error (ME) for a given
role as the probability that a Bayesian classifier will make
an error while classifying a sample window with the given
role assuming equal prior probabilities for each role. Thus,
the misclassification error for a class i is given by:

erri = 1−
�

φi

p(y; i)dy,

φi = {y : p(y; i) ≥ p(y; j);∀j 6= i},

where p(y; i) is the conditional distribution of a feature
y given class (role) i and i is the set of the feature
values for which a Bayesian classifier predicts class i. The
misclassification error gives a theoretical estimate of the
separation of the feature distributions for different roles.
A feature with distributions that are widely separated
for the different classes can predict well and have small
misclassification error.

As can be seen from Fig. 3(a), some certain features
have a small ME for some socio roles, hence are distinctive
for them. In details: Consistency and Spectral Center
features have small ME with Supporter; energy and the

(a)

(b)

(c)

Fig. 3. Misclassification errors for predicting (a) each socio roles, (b)
each task roles and (c) the combined misclassifications for predicting
social and task roles. C: Consistency, SC: Spectral center, A: Activity,
M: Mimicry, I: Influence, BG: Body Gestures.

location of the largest autocorrelation peak (which are
features for Consistency) have low ME for Protagonist;
Activity, Mimicry, Influence and Body Gestures for At-
tackers, accounting for the observation that attackers often
utter small questioning sounds and fidget their hands and
body in discomfort. Finally, MEs are always quite high for
Neutral, suggesting a strong variation of all the features
with this role.

Similar considerations can be made for the task role (cf.
Fig. 3(b)): Orienteer is marked by low ME with Consis-
tency and Spectral Center; Giver by low ME with energy
(Consistency) and Body Fidgeting; Seeker by Activity
and Mimicry; Follower by Influence, accounting for the
observation that followers often nod or speak over, or ask
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Fig. 4. Covariance of the feature set. Blue suggests small value and
red suggests large value and other values lie in between.

questions to the Giver.
Unfortunately, no subset of features emerges that per-

forms uniformly well for predicting all (task and/or socio)
roles; some features are good at predicting one role, while
others are good for other roles. In other words, some fea-
tures may be better for binary classification, but they can
be expected to work poorly in a multi-class classification
like ours. Hence, in the experiments of the following section
we use the full set of audiovisual features discussed above.

5) Correlation among features : We now see the re-
dundancy of information among features in the light of
the covariance matrix for the feature set. The covari-
ance matrix for the audio feature set is shown in Fig.4.
The covariance matrix is normalized to accommodate for
different units of the features. From the figure, we see
that most of the energy in the covariance matrix lies
close to the diagonal and within the blocks shown in the
figure. Thus the activity features are highly correlated
with each other and less with other features. Similarly,
the mimicry feature does not show any strong correlation
with any other feature. This provides a good empirical
justification for the clustering of the low level features
into higher level type of activity and keeping the mimicry
and influence separate. We also notice that there is strong
correlation between the consistency features and spectral
center features especially between (a) the confidence in
formant frequency and the spectral center features and
(b) the location of the largest autocorrelation peak and
consistency features related to the speech spectrum. This
is because we separated the original macro feature of
emphasis into two features (consistency and spectral cen-
ter) that are more intuitively separate. The correlation
among features of the macro type persisted as the cross
feature correlation. In summary, the activity, mimicry and
influence features are more correlated within their types
and less correlated outside their types and the consistency
and spectral center features are more correlated within
their type and with the features of the other but less
correlated with any other feature type.

The above analysis explains why a linear combination

of the low level features to define the measures of higher
level features works well for predicting social outcomes
[48]. For the purposes of this paper, we have used all the
low-level features. There are two reasons for that. Firstly,
there is no subset of the low-level features that performs
uniformly well for predicting all roles. Some features are
good for predicting one role while others are good for
predicting others. For example, consistency features are
good at predicting the supporter role but bad at predicting
the protagonist role. Hence, though some features may be
better for binary classification, they work poorly for multi-
class classification of roles. Secondly, all computation was
done offline and accuracy was a more important criterion
than computational efficiency. Hence, we did not cluster
the low level features into higher-level features. However,
for online prediction, high-level, features can be computed
as a linear combination of the low-level features (the
coefficients can be obtained using the principal component
analysis) and the prediction can be done using only the
high-level features.

The above analysis identifies important speech features
for prediction and also provides error bounds for Bayesian
classification. However, the empirical results may be differ-
ent, because we assumed the form of feature distributions
to be Gaussian, so far. The distribution of the observed
data in the experiments may not be Gaussian, but the
true form of distribution is easy to estimate with limited
data. In section VI, we will discuss prediction accuracies.

V. Model

We used three types of classifiers for predicting the roles,
namely support vector machines, hidden Markov models
and the influence model [44]. The three classifiers incre-
mentally use more information for classification. The SVM
considers each sample to be independent and identically
distributed and the prior probability of each class is con-
stant for each sample. The HMM considers the temporal
correlation between the samples and the prior probability
of the classes in the current sample depends upon the
posterior probabilities of the classes in the last sample. It
is intuitive that people do have some continuity in the roles
and the roles do not change randomly within a small time.
The influence model assumes that people influence each
other and the current role of a person is influenced by the
roles of other participants. For example, it can be expected
that if a person acts as a giver, providing information,
other participants might be listening to her, hence acting
as followers. Thus the influence model presents a much
richer representation of data. However, the extra richness
comes at the additional cost of sample complexity. Thus,
a much bigger training corpus is needed for training the
more complex classifier.

A. Support Vector Machines

We modeled role assignment as a multiclass-
classification problem on a relative large and very
unbalanced dataset, and used Support Vector Machines
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as classifier, because of their robustness with respect to
over-fitting. In fact, SVMs try to find a hyperplane that
not only discriminate the classes but also maximizes the
margin between these classes [49], [50].

SVM were originally designed for binary classification
but several methods have been proposed to construct
multi-class classifier. The “one-against-one” method [15]
was used whereby each training vector is compared against
two different classes by minimizing the error between
the separating hyper-plane margins. Classification is then
accomplished through a voting strategy whereby the class
that most frequently won is selected.

B. Hidden Markov Models

The Hidden Markov model is a standard model for
modeling partially observable stochastic processes and
was originally developed for speech understanding [51].
In our earlier work we used HMMs to model meeting
data and predict social and task roles. HMMs have more
representational power than SVMs because they can model
some of temporal dependencies of roles.

The representation of the model is as follows: t, time;
y(t), the feature vector; x(t), the role; p(x), the priors for
the roles; p(x(t)|x(t-1)), the role transition probabilities;
p(y(t)|x(t)): conditional distribution of observed feature
vector given the current role. We assume speaker inde-
pendence; i.e., the Markov process determining the roles,
the speech features and the hand and body fidgeting of
each person have the same parameters, p(x), p(x(t)|x(t-1))
and p(y(t)|x(t)). Thus, all four-feature sequences (one per
subject) from all eight meetings are used to train a single
HMM. The training is done using the EM algorithm. For
prediction, each person is represented by an independent
instantiation of the same Markov process. Thus, four
independent HMMs represent the four different people in
the meeting. For classification, the Viterbi algorithm is
used to compute the most likely sequence of roles.

C. Influence dynamics of a group of influencing people

The influence modeling approach is a method that can
effectively deal both with the curse of dimensionality and
the over-fitting problem. It has been developed in the
tradition of the N-heads dynamic programming on cou-
pled hidden Markov models [35], the observable structure
influence model [36], and the partially observable influence
model [40]. It extends though these previous models by
providing greater generality, accuracy and efficiency. The
influence modeling is a team-of-observers approach to
complex and highly structured interacting processes. In
this model, different observers look at different data, and
can adapt themselves according to different statistics in
the data. The different observers find other observes whose
latent state, rather than observations, are correlated, and
use these observers to form an estimation network. In
this way, we effectively exploit the interaction of the
underlying interacting processes, while avoiding the risk

of overfitting and the difficulties of observations with large
dimensionality.

Specifically, a latent structure influence process is a
stochastic process {S(c)

t , Y
(c)
t : c ∈ {1, · · · , C}, t ∈ N}.

In this process, the latent variables S
(1)
t , · · · , S(C)

t each
have finite number of possible values S

(c)
t ∈ {1, · · · ,mc}

and their (marginal) probability distributions evolve as the
following:

P(S(c)
1 = s) = π(c)

s ,

P(S(c)
t+1 = s) =

C∑
c1=1

mc1∑
s1=1

h(c1,c)
s1,s P(S(c)

t = s1),

where 1 ≤ s ≤ mc and h
(c1,c)
s1,s = d(c1,c)a

(c1,c)
s1,s (a(c1,c)

s1,s

represent the relations of different states for the interact-
ing processes, and d(c1,c) represent the influence among
the processes). The observations ~Yt = (Y (1)

t , · · · , Y (C)
t )

are coupled with the latent states ~St = (S(1)
t , · · · , S(C)

t )
through a memory-less channel,

P(~St)P(~Yt|~St) =
C∏

c=1

P(S(c)
t )P(Y (c)

t |S(c)
t ).

The algorithms for the latent state inference and the
parameter learning of the influence model follows from
the above definition and maximum likelihood estimation
algorithm. A detailed discussion of this model, as well as
its algorithms, can be found in [43], [44].

The following imaginary group dynamics example
(Fig.5) illustrates the interacting dynamic processes we
are referring to, and how the influence modeling simul-
taneously exploring and exploiting the structure among
them. In this example, we have a network of six people who
may be engated in one, two, or more separate discussions,
and our task is to estimate whether a person is neutral
or excited from noisy observations of him. A natural
approach is to make estimations of the states of a person
from the observations of not only this person, but also
the related people, in a short window around the time
of the estimated states. The estimation is a chicken and
egg problem: the more we know about the structure (i.e.,
who is involved with what discussion), the better we can
estimate the latent states, and vice versa.

An important consideration in choosing a multi-class
classifier is whether the classifier, after it is trained from
a training data set, can generalize to future applications.
With increased dimensionality and without regularization,
even a linear classifier, which is considered stable, can
overfit. The latent structure influence modeling of interact-
ing processes avoids the curse of dimensionality problem
with the team of observers approach. In this approach,
the individual observers only look at the latent states of
the other related observers, rather than looking at the raw
observations, and thus are less likely to be overfit and more
likely to be generalizable.

Fig.6 compares the performances of several dynamic
latent structure models (the influence model, the hidden
Markov model with 16 latent states and 10-dimensional
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Fig. 5. Estimating network structure and latent states simultane-
ously from noisy observations with the influence model. The task is
to estimate the true states, as well as the interaction, from noisy
observations shown in (b). The recovered interaction structure in (c)
has 90% accuracy, and the estimated the latent states in (d) have
95% accuracy.

Gaussian observations, the hidden Markov model with 64
latent states and 10-dimensional Gaussian observations,
and 10 hidden Markov models, each on one dimensional
data). Of the 1000 samples, we use the first 250 for training
and the rest 750 for validation.

Judged from Fig.6, the logarithmically scaled number
of parameters of the influence model allows us to attain
high accuracy based on a relatively small number of
observations. This is because the influence model preserves
the asymptotic marginal probability distributions of the
individual “bits”, as well as the linear relationship among
them. Hence, the influence model shrinks the number of
parameters of the original hidden Markov model logarith-
mically and in an efficient way, while still preserving the
principal dynamics of the process.

In our recent efforts to improve the descriptive power
of the influence modeling, we realized that we could give
the individual sites (c ∈ {1, · · · , C}) the volition on how
much it wants to vote on the latent states of another site
(c′ ∈ {1, · · · , C}). (In the group discussion example, if a
person takes the giver role, he can vote another person
to take the neutral or seeker role. On the other hand and
in contrast to our previous influence modeling, if a person
takes the neutral role, he can choose not to vote on another
person’s task and social roles.) As a result, the latent state
space of an individual site consists of the summed votes
from other sites on the site’s next possible state, with a
probability measure associated with the space. Specifically,

S
(c)
1 (s) = π(c)

s ,

S
(c)
t+1(s) =

C∑
c1=1

mc1∑
s1=1

h(c1,c)
s1,s P(S(c)

t = s1),
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A comparison of different dynamic latent structure models
on learning complex stochastic systems
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Fig. 6. Latent state influence process is immune to overfitting.

P(~Yt, ~St) = P({S(c)
t (s(c))}s(c)∈1,···,mc

c∈1,···,C ) ·
C∏

c=1

P(Y (c)
t |S(c)

t ).

The algorithms for the latent state inference and the
parameter learning of the influence model could be derived
from the new definition.

VI. Experimental Results

In this section, we will present our experimental results
in recognizing the roles of discussion participants with
their honest signals and turn-taking behavior.

A. Performance of Individual Honest Signals
In the Mission Survival I corpus, the visual features are

extracted on a frame(=0.33 seconds) base. Similarly, the
relational roles were manually annotated on a frame base.
The audio features, as we have seen, are computed on one
minute windows. Hence a decision must be taken as to
how the frame-based annotation should be projected at the
level of the one minute window. We applied two heuristics
for this projection. Heuristic 1 uses the straightforward
frequency criterion. This heuristic resulted in highly un-
balanced data, with most of the windows labeled as neu-
tral/follower. Table V shows the distributions of functional
roles, the accuracy of predicting social roles for different
classifiers with different feature sets, and the accuracy for
task roles1. The results are comparable to those in [31], and
show that better accuracy is obtained with audio features
than with visual features. The SVM tends to perform
better that the other two models, whereas the influence
model performs better than HMM. As pointed in [31]

1We used the BSVM tool [52] available at
http://www.csie.ntu.edu.tw/˜cjlin/bsvm/. The bound-constrained
SVM classification algorithm with a RBF kernel was used. The cost
parameter C and the kernel parameter g were estimated through
the grid technique by cross-fold validation using a factor of 101.
Furthermore, the cost parameter C was weighted for each class with
a factor inversely proportional to the class size.
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TABLE V
Distributions of social (a) and task (b) roles after the

application of Heuristic 1, and the corresponding
prediction accuracy (c) for SVM/HMM/IM with

visual/speech “honest signals”/all features.

(a) Supporter Protagonist Attacker Neutral
.034 .158 .000 .808

(b) Orienteer Giver Seeker Follower
.038 .210 .003 .749

(c)
Social Task

SVM HMM IM SVM HMM IM

Visual .70 .73 .71 .68 .73 .68
Audio .82 .71 .75 .76 .71 .74
Joint .92 .75 .77 .79 .73 .74

the accuracies are comparable to any human predicting
the roles. A classifier that classifies all observations as
the class with highest frequency always classifies them
as neutral and follower. The accuracy of this classifier is
the probability of the class with highest frequency and
we call this the benchmark accuracy. However, as already
pointed out the frequency of non-neutral and non follower
labels in the used corpus were extremely small due to the
labeling procedure, and the accuracy figures mostly reflect
the high accuracy on the neutral and follower roles. To
provide some more balance to the data set and to not
miss the important and rarer roles, we used a slightly
different labeling mechanism. In heuristic 2, a one-minute
window was given the most frequent of the non-neutral (or
non-follower) labels if that label was present for at least
in one fourths of window’s frames; otherwise the window
was labeled as neutral. The distribution of social and
task roles in the data after applying heuristic 2 is shown
in Table VI. Besides avoiding missing non-neutral/non-
follower roles, this strategy has its justification in the
application scenarios described at the beginning of this
paper, where finding out about non-neutral/non-follower
roles is of the utmost importance for facilitation and/or
coaching. The overall accuracy was lower than with the
other labeling method, as shown in Table VI, with the
influence model and the HMM performing similarly, and
better than the SVM, a result that can be attributed to
the capability of the Influence model and of the HMM to
model temporal relationships . The details concerning the
precision and recall figures for each methods are reported
in Table VII.

The results obtained by means of the sole speech fea-
tures are almost always superior to those attained by
means of the video features and to those obtained by
combining the two. Hence, we will restrict the discussion
to the speech features.

When considering the average values of precision and
recall for the speech features, a slight advantage for the
HMM emerge in the socio-role area, and a similar slight
advantage of the SVM in the task area. All the classifier
completely miss the attacker role; the HMM and the IM
miss the seeker; in addition, the IM misses the orienteer.

TABLE VI
Distributions of social (a) and task (b) roles after the

application of Heuristic 2, and the corresponding
prediction accuracy (c) for SVM/HMM/IM with

visual/speech “honest signals”/all features.

(a) Supporter Protagonist Attacker Neutral
.149 .326 .002 .522

(b) Orienteer Giver Seeker Follower
.070 .517 .017 .395

(c)
Social Task

SVM HMM IM SVM HMM IM

Visual .21 .54 .51 .19 .44 .43
Audio .45 .57 .57 .52 .54 .61
Joint .46 .56 .57 .51 .53 .58

TABLE VII
(Precision, Recall) of task/social-emotional roles using

SVM/HMM/IM with body gestures, speech “honest signals”
and both.

Supporter Protagonist Attacker Neutral

SVM

Visual .13, .72 .05, .04 .00, .00 .54, .23
Audio .09, .33 .29, .17 .00, .00 .74, .61
Joint .12, .38 .34, .22 .00, .00 .73, .60

HMM

Visual .00, .00 .07, .03 .00, .00 .58, .91
Audio .11, .10 .38, .65 .00, .00 .79, .63
Joint .15, .16 .37, .50 .00, .00 .73, .67

IM

Visual .06, .01 .35, .19 .00, .00 .59, .77
Audio .15, .07 .44, .43 .00, .00 .68, .75
Joint .13, .06 .41, .34 .00, .00 .66, .80

Orienteer Giver Seeker Follower

SVM

Visual .02, .34 .12, .15 .03, .33 .62, .28
Audio .09, .39 .64, .40 .11, .11 .69, .67
Joint .07, .22 .63, .40 .08, .06 .69, .68

HMM

Visual .00, .00 .38, .10 .00, .00 .47, .86
Audio .15, .25 .56, .67 .00, .00 .79, .54
Joint .16, .17 .57, .63 .00, .00 .69, .57

IM

Visual .03, .05 .44, .37 .00, .00 .47, .57
Audio .00, .00 .64, .60 .00, .00 .66, .74
Joint .00, .00 .63, .55 .00, .00 .62, .75

In a way, the IM seems to be less sensitive to rarer roles.
Moreover, they are now better than the benchmark. In
the end, the five classes of honest signals seems to be
the more predictive and informative features. Since the
classification accuracies are the best when we use IM with
speech features, we now investigate what honest signals in
speech are important for classification.

We considered the contribution of the various audio fea-
ture classes. Table IX shows the accuracy values obtained
using independent classifier. Interestingly, the Activity
class yields accuracy values (slightly) higher than those
produced through the usage of the entire set of audio
features, cf. Table VI. Hence using the sole set of Activity

TABLE VIII
Average precision and recall figures for speech features.

Social Task
Mean P Mean R Mean P Mean R

SVM .28 .28 .38 .39
HMM .32 .35 .38 .37
IM .32 .31 .33 .34
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TABLE IX
Accuracies for social and task roles (independent

classifiers) with the different classes of speech features
on Heuristic 2 data.

Social roles Task roles

Consistency .50 .47
Spectral Center .50 .47

Activity .60 .62
Mimicry .50 .37
Influence .54 .52

TABLE X
Distribution of social × task roles with Heuristic 2.

supporter protagonist attacker neutral

orienteer 0,011 0,023 0,000 0,037
giver 0,077 0,169 0,001 0,270
seeker 0,003 0,006 0,000 0,009

follower 0,059 0,129 0,001 0,206

features emerges as a promising strategy.
Finally, we explored the extent to which the relation-

ships between task and social role discussed above can be
exploited, by training a joint classifier for social and task
roles—that is, a classifier that considers the whole set of
the 16 combinations of social × task roles; a more difficult
task than the ones considered so far. Table X reports the
distribution of the joint roles in the corpus, while Table
XI the classification results.

The results are interesting. Notice, first of all, that
the accuracies are always much higher than the baseline,
see the bold figure in Table X. Moreover, the sole audio
features produce results that are comparable to those
obtained by means of independent classifier, despite the
higher complexity of the task. These results show a) that
it makes sense to try to take advantage of the relationships
between task and social role through the more complex
task of joint classification; b) that the IM is capable of
scaling up to larger multi-class tasks without performance
losses.

B. Performance of Turn-taking Signals

Modern statistical methods are normally guarded
against overfitting by some mechanisms, and can normally
attain comparable performances by careful selection of
features and careful formulation of problems. On the other
hand, some methods may be easier to use and more
intuitive to understand for some problems. This subsection
discusses the one-person features and the interaction fea-
tures that statistical learning methods (the support vector
method and the influence model in particular) should
utilize to get good performances, the different ways the

TABLE XI
Accuracy of joint prediction of social and task roles.

social roles task roles

visual .47 .41
audio .58 .60
joint .59 .56

methods use the features, and the resulting performances.
The turn-taking behavior related to the functional roles

of a speaker at a specific moment includes: (1) his amounts
of speaking time in time-windows of different sizes around
the moment; (2) whether other persons turned their bodies
to the speaker at the beginning/end of his speaking turn;
(3) the amounts of speaking time of the other persons in
time windows of different sizes around the moment, in
particular the amounts of speaking time of the persons
that speak the most in those time windows; and (4) the
psychological profile of this person, e.g., his extroverted-
ness, his tendency to take control and his level of interest
in the discussion topic.

The influence model formulates the group process in
terms of how an individual takes his functional role based
on the functional roles of the others on the one hand, and
how an individual presumes the others’ possible functional
roles based on everyone’s current roles on the other hand:
When a person is taking the giver role, he prefers the
others to take the neutral/follower role or the seeker role
at least for a while; In comparison, when a person takes
the neutral role, he does not quite mind who is going
to take which role next; When all participants take the
neutral role, the overall preference of the whole group
could be quite weak, so that the individuals could wander
about their role-taking states until some individual takes
a “stronger” role. Specifically, an influence model can tell
a participant’s maximum likelihood functional role at a
moment by comparing how likely different roles correspond
to his amounts of speaking time in time-windows of dif-
ferent sizes around this moment. When there are doubts
on whether a person is shifting to the giver role or the
seeker role, for example, the influence model will look at
the intensity of the other participants’ body movements:
The giver role is associated with more body movements
at the beginning of the corresponding speaking-turn and
more attention from the others. The participants’ roles
a moment ago can be exploited by the influence model
to generate a “vote” for different roles for the participant
under investigation, and the vote can be subsequently used
to bias the model’s Bayesian estimation. The psychological
profile of the participants can be further used for generat-
ing the votes (for the participants to take certain roles).

The support vector method (SVM) on the other hand
does not involve probability distribution in the training
phase and the application phase, although SVM can be
inspected in the Bayesian framework. SVM also requires
the model observations to be points in a (possibly high-
dimensional) Euclidean space. In terms of utilizing the
amounts of speaking time corresponding to different win-
dow sizes, the support vector method performs as good as
any Bayesian method, and the latter requires appropriate
probability estimations of the observations conditioned on
the functional roles. We sorted the amounts of speaking
time over all participants in every time-window of differ-
ent sizes up to some upper bound (two minutes in our
experiments), and use the sorted amounts of speaking
time over all speakers and corresponding to all window
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sizes around the moment of inspection (among other fea-
tures) for functional-role classification. The arrangement
by sorting makes the corresponding feature permutation
independent. The support vector method can subsequently
disambiguate among the possible roles of a person by
comparing his amounts speaking time with those of the
others, and with those of the person who speaks the most
in particular. The hand/body movements involved with
role-shifting is the hardest feature for the support vector
method, since the boundaries of the role assignments
are unknown. The trained functional-role classifiers with
SVM seem to indicate that SVM uses the body/hands
movement corresponding to the current moment for dis-
ambiguating the roles.

Table XII compares the performance of the influence
model and the performance of SVM using the best con-
struction of features we can think of. We can see that the
performances of both SVM and the influence model are
improved compared with our previous work [31], especially
for the infrequently appearing roles. The improvement
is because we have a better understanding of the group
process. The influence model has a slightly higher per-
formance than the SVM, while previously the former is
slightly lower than the latter. This is due to our new per-
spective and corresponding EM algorithm for the influence
modeling. The latent state space of an influence model
is the summed voting of the individuals’ future states
(e.g., participants’ next functional roles) associated with
a probability space, while previously it was the marginal
probability distributions among those states. A direct
consequence of this new perspective is that a neutral role
couldn’t waive his votes previously, and now he can.

VII. Functional Roles and Performances

One reason for us to inspect the group processes and
the Task/Socio-Emotional Area roles is that we want to
design automated tools to improve the group performance.
In the Mission Survival Corpus I, the initial individual
scores and the final group scores of seven discussions out
of a total of eight are available, and they are in terms
of how the individual/group rankings of 15 items are
different from the standard expert ranking. (f(r1 · · · r15) =∑15

i=1 |ri − r
(0)
i |, where f is the score function, r1 · · · r15

is an individual/group ranking, r
(0)
1 · · · r(0)

15 is the expert
ranking, ri 6= rj and r

(0)
i 6= r

(0)
j for i 6= j, and ri, r

(0)
i ∈

{1, · · · , 15}.) Thus the corpus provides us laboratory data
to inspect how individuals with different initial perfor-
mances and psychological profiles interact with each other
and incorporate their individual information to reach a
better performance. Our preliminary findings are given
below.

The post-discussion group performance is linearly and
positively correlated to the average of its participants’
pre-discussion individual performances, with the former
being slightly better than the latter. (group score = .93×
average of individual scores -.74, R2 = .58, p = .03.) The
relationship is shown in Fig.7 (a), and can be explained

TABLE XII
Performances of classifying task/social-emotional roles

using SVM/IM with interaction signals.

SVM

Giver Follower Orienteer Seeker %

g
ro

u
n
d

tr
u
th G 10758 1944 982 1092 .72

F 2581 26924 334 3401 .80
O 796 153 795 447 .36
S 362 639 27 277 .21
% .74 .90 .37 .05

influence model
Giver Follower Orienteer Seeker %

g
ro

u
n
d

tr
u
th G 10173 1441 880 2282 .68

F 1542 28000 246 3542 .84
O 708 260 1045 178 .48
S 426 219 32 628 .48
% .79 .94 .47 .10

SVM

Attacker Neutral Protagonist Supporter %

g
ro

u
n
d

tr
u
th A 95 63 15 12 .51

N 452 32779 3932 1308 .85
P 320 813 5789 2458 .62
S 143 251 1738 1344 .39
% .09 .97 .50 .26

influence model
Attacker Neutral Protagonist Supporter %

g
ro

u
n
d

tr
u
th A 108 54 5 18 .58

N 450 32813 3916 1292 .85
P 318 804 5804 2454 .62
S 142 258 1733 1343 .39
% .11 .97 .51 .26

with a probabilistic model on how individuals combine
their results: Prior to the discussion, pieces of information
for solving the ranking problem of the mission survival task
are probabilistically distributed among the participants,
and different individuals have the correct/best rankings
for different items. During the discussion, the individuals
merge their information through a group process that is
probabilistically dependent on their initial performances,
their interactions with each other, and many other fac-
tors. When the individuals disagree on the ranking of an
item, they can either choose one from their repository of
rankings that results in minimal disagreements, or find a
creative and better ranking by further information sharing
and an ’aha’ experience. Previous experiments show that
groups make use of their resources to a probabilistically
similar extent, and experienced discussion groups out-
perform inexperienced groups by generating more item
rankings that are creative and better through better
information sharing [27]. Thus the relationship between
the group performance and the average of the individual
performances follows from the fact the different groups are
more or less similar.

The improvement of a group’s performance over the
average of the individuals’ is positively correlated to the
average number of simultaneous speakers over the discus-
sion, which reflects the intensity of the discussion and is
used by us as a measure of influence (R2 = .35, p = .10).
The relationship is shown in Fig.7 (b). The improvement
is also positively correlated to the frequency that meeting
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Fig. 7. (a) Group score is linearly related with the average of
pre-discussion individual scores. (b) Group performance is linearly
related with the average number of simultaneous speakers.

participants take the protagonist role (R2 = .35, p = .10)
and the rate that meeting participants take the giver
role (R2 = .28, p = .12). Since the average length of a
continuous protagonist role segment is almost 50% longer
than the average length of a continuous giver role segment
(26 vs. 19), we speculate that the improvement is more
dependent on the longer utterances of the individuals. The
improvement doesn’t seem to correlate with either the
length of a discussion or the rates that the participants
take other roles. These correlations are again compatible
with the observation from previous experiments that an
experienced discussion group encourages better problem
solving and thorough information sharing [27]: An inex-
perienced discussion group worries more on whether it
could reach a consensus. As a result, its members treat
consensus-reaching as the goal, rather than the natural
result of sufficient information sharing. They either argue
for their own rankings without paying attention to the
others’ arguments, or give up their rankings easily. In
either way, they feel their importance in the discussion
are not sufficiently recognized, quickly lose their motiva-
tion for participation. In contrast, an experienced group
encourages different opinions, and views conflicts as insuf-
ficient information sharing. Its participants solve a conflict
by a thorough discussion and a win-win problem solving
strategy rather than by cheap techniques such as majority
voting and coin-flipping. The participants also give suffi-
cient suspicion on easy initial agreements. Different group
discussion process characteristics and different role playing
behavior can be dependent on the different opinions on
what is a fruitful group discussion between an experienced
group and an inexperienced group.

In many of the discussions, one or a few individuals take
certain task and social roles twice as much as the other
roles. The fraction of speaking time of an individual and
the rates that an individual takes the giver role and the
protagonist role do not seem to correlate with the initial
performance of the individual. Based on the small number
of discussions and the fact that the meeting corpus is in
Italian, we can only speculate that role-taking is related
to the individuals’ personal styles, motivation, interaction

with each other, and many other factors.
While it is our belief that the symptoms of group process

problems could be found by automated tools and the
prescriptions could be accordingly given, we note that
facilitating the group process is trickier. For one reason,
an inappropriately phrased prescription may inadvertently
block the participants’ attentions to the real goal of the
discussion, and shift the attentions from one unimportant
thing (e.g., the pressure of reaching a consensus) to an-
other (e.g., the “appropriate” speaking-turn lengths and
the “appropriate” number of simultaneous speakers).

VIII. Conclusions

This paper discussed the turn-taking dynamics and
the changing individual role assignments of several group
brainstorming sessions in Mission Survival Corpus I. It
also discussed their modeling and learnability issues using
several statistical learning methods (in particular, the
support vector method and the influence model). We
model the group discussion dynamics by first introspecting
how such discussions should work to suit their purposes
and then by applying the appropriate statistical learning
methods. We have several future directions in our minds:
Firstly we are simulating the behavior and performances
of different types of brainstorming sessions with stochastic
processes and simplified assumptions, and comparing the
simulated results with the experimentally collected results.
The simulation could provide insight in understanding
the collective intelligence. Secondly we would like to use
our modeling to improve the multi-person interaction
efficiency. Thirdly we would like to know whether our turn-
taking and role-assignment modeling could be suitable for
other types of multi-person interactions with appropriately
tuned parameters.
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