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1 Introduction

Self-organizing system is a complex system that enables decentralized control. And

during the last few years, several definitions and mechanisms have been examined in

order to understand how software can be used to model self-organizing systems and
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how self-organizing systems can empower the computer science by adding robustness

and adaptation.

That robustness and adaptation are achieved in self-organizing systems because

self-organization is a process that results from the evolution of a system into an orga-

nized form in the absence of an external supervisor [1]. If we call each local entity of

this process an agent, a system can be defined as a group of interacting agents that is

functioning as a whole and distinguishable from its surroundings by its behavior and

an organization is an arrangement of selected parts so as to promote a specific function.

Serugendo et al. also highlight the difference between strong and weak self-organizing

systems [2]. Strong self-organizing systems are those systems where there is no explicit

central control either internal or external; and weak self-organizing systems are those

systems where, from an internal point of view, there is re-organization maybe under

an internal (central) control or planning.

In this paper, when we mention self-organizing systems we mean strong self-organizing

systems and in this case, due to its decentralized control, it is hard to understand how

the local decisions impact on the global behavior of the system where it belongs. So far

it is known that multi-agent systems can be used to model self-organization since they

share the same properties. In a multi-agent system, we have the agents (local) sensing

and acting in an environment (global) [3][4].

Moreover, there is a lack of a suitable architecture that address this problem by

enabling design and validation. So far we have in literature sets of self-organizing

patterns [5][6] detached from validation methods to check the required properties of

the self-organizing system. There is also no integration to the system simulation nor

reusable approach to different kinds of self-organizing systems.

The requirements for validation support in a simulation-based self-organizing ar-

chitecture are related to the support for designing macroscopic properties (which are

the desired guarantees of the self-organizing system to be achieved), monitoring and

evaluation at the testing phase. By evaluation we mean checking if the self-organization

is not producing a misbehavior with regard to the desired guarantees. Therefore in-

terfaces have to be provided at the architecture level so the engineer is able to model

the relation between the macro-micro levels and evaluate the macro level w.r.t the

simulation at the micro level. In particular, this means that the architecture has to

provide abstractions to enable an entity to perceive all the input and output events

or actions from the agents and environments at the micro level. The impact of those

actions on the environment at the macroscopic level has to be then evaluated during

the simulation if possible in an autonomic way, by autonomic we mean without the

human intervention.

In this context, this paper presents a multi-agent simulation-based architecture

that helps on the design and validation of self-organizing systems. The architecture

also addresses multi-environment structures [7] that is a characteristic of many self-

organizing systems, such as clusters of networks or biological systems (for instance,

extracellular is an environment where the cells live and each cell is an environment

where proteins live and so on). The architecture also addresses validation issues by

providing suitable interfaces and hooks to plug the validation strategies of the desired

guarantees, and an internal mechanism during the simulation that can roll back the

simulation if an undesired state is achieved. Undesired states can be achieved if the self-

organization mechanism is not properly set. Therefore we can ensure that the design

solution of the self-organization does not lead the system to undesired states or it (the

design solution) will be rejected after a number of roll backs.
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Therefore, the main contribution of this paper is the architecture itself integrated to

the provided automated validation features. Along with this architecture, we propose

a middle-out approach to the engineering of self-organizing systems.

In the next section, we describe a well known self-organizing problem in order to

introduce not only the main issues but also the case study for which we present an

evaluation and results later in Section 5. We describe the architecture requirements

in Section 3. Section 4 presents in details the proposed architecture meta-model and

dynamics. In Section 5, we describe the case study by explaining how to model the

self-organization on top of the main architecture elements, how to define the desired

guarantees of the self-organization and how to instantiate the validation component.

After the case study description, we present the related work on Section 6. Finally, we

conclude the paper and present the future work.

2 Problem Description: The Automated Guided Vehicles

The Automated Guided Vehicles (AGV) problem was chosen because it has been used

in the existing self-organizing research [8], [9] as a centralized system that can be

designed as a self-organizing system to achieve decentralized control and it is capable

of evaluating the components of the proposed architecture.

An AGV transportation system uses multiple computer-guided vehicles in ware-

houses. Each vehicle, or AGV, moves loads (e.g. packets, materials) in a warehouse

from the pickup to the drop stations and can only perform a limited set of local ac-

tions, such as move, pick up load, and drop load. The goal is to efficiently transport

incoming loads to their destination.

The dispatching, which is the process of an AGV receiving a load, and routing,

which is the process of an AGV carrying a load from the Pickup Station to the nearest

Drop Station to avoid congestions, both require a mechanism that enables aggregation

and calculation of extra information while flowing through the warehouses. In [9] the

decentralized control for this problem is achieved through the use of the Gradient

Fields pattern which takes its inspiration from physics and biology [10], [5]. In physics,

the Gradient Fields mechanism can be found in the way masses and particles in our

universe adaptively move and globally self-organize their movements accordingly to

the locally perceived magnitude of gravitational/electromagnetic/potential fields. The

fields create a ”waveform” that the particles follow.

In this way, three gradient fields that indirectly guide the automated vehicles can

be defined: (i) the Pickup Gradient, generated by the Pickup Stations to notify that

there are loads to be dispatched. The farther the gradient is from the source station, the

weaker it is, and this strength or weakness helps a vehicle to choose the nearest station

because it will choose the strongest one, since it means that this is the closest station;

(ii) the Drop Gradient, designed with the same mechanism of the Pickup Gradient,

which helps a vehicle to choose the nearest Drop Station once it has a load to be

delivered; and (iii) the Vehicle Gradient, a gradient propagated in the environment by

all vehicles with the goal of avoiding collisions or congestion. Then if a vehicle perceives

this gradient in the neighborhood, it will try to choose the next location with the lowest

Vehicle Gradient (since the highest means more vehicles nearby that location).

The first issue that arises from this design solution is: how do we design its imple-

mentation? Do we have any architecture from where we can start, without having to

reinvent all the basic mechanisms such as the propagation of the information and the
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coordination as a result of the propagation? How do we design the entity-entity and

entity-environment communications?

Then the second issue is: how do we evaluate this system? What guarantees can

we get from our model? In this problem, we need more than guarantees about de-

livering all packets, we want it to be as fast as possible or at least in a reasonable

time. Therefore, we need statements that assure the desired evolution of the average

dispatching and routing time, and those statements represent the macro properties or

the desired guarantees of the self-organizing system. For instance, suppose that the

routing throughput measures the routing rate of a load from the moment a vehicle gets

a load and delivers it at the drop station. If the routing throughput decreases it means

that more packets are being dispatched than being delivered at the drop off station,

on the other hand if it increases it means the opposite which is desired because shows

efficiency. But how do we design this evaluation? We need an approach to specify those

desired guarantees and they will be the validation method pillars: the self-organization

can only be considered valid if the desired guarantees are satisfied.

Moreover, as a self-organizing system it has a non-deterministic behavior which

makes even harder to find a good solution efficiently since we are not able to try

every state. What kind of architecture and strategy should we use to tackle the non-

determinism of self-organizing systems?

We need an architecture that provides an asset base engineers can draw from when

developing and evaluating self-organizing applications. This architecture has to pro-

vide suitable interfaces and mechanisms that allows the simulation to be automated

observable and tuned.

Moreover, this architecture has to help the development of not only this solution,

but of any application that share self-organizing dynamics (decentralized control, prop-

agation of information, coordination in response to propagations, etc) in any type of

environment and structure. This paper describes such an architecture.

3 The Architecture Requirements

An architectural design helps on the development of a modular program structure and

on the representation of the control relationships between modules [11]. It provides a

software engineer with a picture of the program structure and behavior. An architecture

encourages the software engineer to concentrate on architectural design before worrying

about optimizations or code. The main goal of an agent-based architecture for self-

organizing systems is to provide an architecture that helps on the design, simulation,

and validation of self-organizing systems.

A multi-agent simulation-based architecture for self-organizing systems more specif-

ically must:

– Provide simulation features;

– Provide core components underlying the environment, including different structures

and allow creativity in the design of self-organizing multi-agent systems;

– Provide coordination mechanisms to support reuse of self-organizing mechanisms;

– Provide mechanisms for action selection to an integral model that includes support

for reusable validation mechanisms.

– Provide validation mechanisms to support the micro-macro relationship under-

standing.
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Therefore, there are four macro requirements to be considered to produce a proper

architecture: simulation, coordination, multi-environment and validation support. In

this section we describe each of them separately and their motivation as a requirement.

3.1 Simulation Support

At its heart, a simulation-based self-organizing architecture should provide interfaces

that allows discrete-event simulation. In discrete-event simulation, the operation of a

system is represented as a chronological sequence of events. Each event occurs at an

instant in time (which can be called a step) and marks a change of state in the system.

The step exists only as a hook on which the execution of events can be hung, ordering

the execution of the events relative to each other. The agents and environment are

considered events at the simulation core. It is worth noting the difference of a steppable

event and an event that can be fired in the environment. The former is a concept related

to discrete event-based simulations, while the latter is the information that allows the

coordination and the decentralized control of the system. On the other hand an event

fired by an agent can also be steppable. It usually happens, for instance, when this

event was propagated in the context of the Evaporation pattern. In this pattern, in

some point of time after the event was fired, it has to disappear from the environment.

This can only be achieved if the event is treated as a steppable event.

For any discrete-event simulation there are a number of requirements, and a self-

organizing architecture based on simulation also inherits those requirements, such us:

ability to compress or expand time, ability to control sources of variation, avoids errors

in measurement, ability to stop and review, ability to restore system state, and others

[12].

The main loop of a discrete-event simulation w.r.t a multi-agent-based simulation

is:

Start

.Initialize Ending Condition to FALSE.

.Initialize system state variables: the environment and the agents.

.Initialize clock (usually starts at simulation time zero).

.Schedule initial events (add to the Events list): this means to schedule the envi-

ronment and its agents.

”Do loop”

.While (Ending Condition is FALSE) then do the following:

– Set clock to next event time.

– Do next event (step the agent or environment) and remove from the Events

List.

– Update statistics.

End

.Generate statistical report.

In a self-organizing system, the statistics are the desired guarantees related to the

macroscopic properties. Furthermore, the scheduling mechanism should allow for more

sophisticated dynamic schedules such that the execution of an event can itself schedule

other events for execution in the future. This is particular used by the environment

that on each addition or removal of an agent (or any steppable entity) will add the

agent to/ remove the agent from the Events list, respectively.
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3.2 Coordination Support

Among all the possible interaction mechanisms, a simulation-based self-organizing ar-

chitecture has to support uncoupled and anonymous ones [10]. Uncoupled and anony-

mous interaction can be defined by the fact that the two interaction partners need

neither to know each other in advance, nor to be connected at the same time in the

network. Uncoupled and anonymous interaction has many advantages. Summarizing,

uncoupled and anonymous interaction is suited in those dynamic scenarios where an

unspecified number of possibly varying agents need to coordinate and self-organize

their respective activities.

Therefore, the taxonomy created of the events in a simulation-based self-organizing

architecture has to relies on what and how information is being communicated: explicit

or implicit interaction, directly to the receiver, propagation though neighbors, and so

on. Moreover, the agent may react in a different way according to the information type.

Figure 1 illustrates a coordination example of positive and negative feedbacks

through the activation of agent or environment actions. Action A of an Agent X pro-

duces a growing behavior while can directly or indirectly activate Action B of an Agent

Y (it could be also the Agent X itself) and the Action B in turn directly or indirectly

activate Action A. While Action C produces a slowing behavior and is activated by

Action B and also directly or indirectly activate Action B.

3.3 Multi-Environment Support

Depending on each agent type being developed, the environment types vary. The envi-

ronment defines its own concepts and their logics and the agents must understand this

in order to perceive them and to operate. The environment might be accessible, sensors

give access to complete state of the environment or inaccessible; deterministic, the next

state can be determined based on the current state and the action, or nondeterministic,

and so on.

Each application domain has its own view of what is an environment and what are

the functionalities implemented by an environment. In current approaches, each time

a different aspect of the application domain is identified this aspect is then appended

to the environment in an ad hoc manner. As a result, the environment centralizes

all the different aspects of the targeted application. In particular, for a situated envi-

ronment, an additional element characterizes this agent-environment relationship: the

localization function is specifically provided by situated environment. In a situated en-

vironment, one can define the location of an agent in terms of coordinates within the

environment [8], [13].

A self-organizing system has a structurally distributed environment; in other words,

at any point in time, no centralized entity has complete knowledge of the state of the

environment as a whole. Furthermore, a designer may decide to model environments

using various underlying structures. For example, an environment can be modeled as a

graph, a discrete grid, a continuous space or a combination of these (figure 3). In addi-

tion, to achieve performance in a cluster or computational grid, or even because of the

domain application, the environment can be distributed from a processing perspective

if it is designed to be executed in a distributed network. So, the more choices for en-

vironment structures, the broader its application in the field of multi-agent simulation

systems.
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The process of building such a self-organizing system with a multi-environment

framework that merges several aspects is made clearer at both the design and imple-

mentation levels. So, the agents can exist in several and independent environments.

Each environment is concerned only with a specific aspect and can be developed inde-

pendently from other environments. Therefore, existing environments do not need to

be redefined or modified. The environment has a dual role as a first-order abstraction:

(i) it provides the surrounding conditions for agents to exist [14], which implies that

the environment is an essential part of every self-organizing multi-agent system, and

(ii) the environment provides an exploitable design abstraction to build multi-agent

system applications.

3.4 Validation Support

The requirements for validation support in a simulation-based self-organizing archi-

tecture are related to the macroscopic properties (which are the desired guarantees of

the self-organizing system to be achieved), monitoring and evaluation at the testing

phase. Therefore interfaces have to be provided at the architecture level so the engineer

is able to model the relation between the macro-micro levels and evaluate the macro

level w.r.t the simulation at the micro level.

The architecture has to provide abstractions to enable an entity to perceive all the

input and output events or actions from the agents and environments at the micro

level. The impact of those actions on the environment at the macroscopic level is then

evaluated. At this point, the execution flow has to be divided in two flows:

i) if an action had a positive impact in the simulation, i.e., contributed to the desired

guarantees, nothing is done and the iteration is back to the beginning;

ii) if an action led the simulation to an undesired state or is deviating the system from

the goal state, the Plan module has to be activated. It is responsible for effectively

planning the system state backward steps so the Execution module can roll back

and the system could converge to a desired or optimum state, if reachable.

Therefore, the architecture has to be able to provide interfaces for the definition

of symmetric actions1so roll back procedures can be performed when needed. It is

necessary to provide an interface that will be realized by a domain-based algorithm

that operates through the flow of control according to the actions, declare the subset of

states that characterize a goal or emergent property (for each), and provide the state

evaluation strategy that is based on trends or allowed average behavior.

4 SSOA: A Simulation-based Self-Organizing Architecture

The SSOA (Simulation-based Self-Organizing Architecture) is the multi-agent simulation-

based architecture for self-organizing systems proposed in this paper. The two main

components of the architecture can be seen inside the dashed box: MESOF and MAN-

AGER (figure 4). While the MESOF provides mechanisms and interfaces to build a

1 Symmetric actions are reversible actions. This concepts is also used in Online Planning.
In this context, the goal of planning is to synthesize a set of actions that, when executed,
will achieve the user’s goals or required properties. Currently deployed planners for real-world
applications are frequently run in an online setting in which plan synthesis and execution run
concurrently.
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self-organizing system to be simulated. The MANAGER provides mechanisms and

interfaces integrated to MESOF that helps on the validation of that system.

During the SSOA instantiation, the software engineer needs to address the micro-

scopic issues: identify agents, environment, objects and structural relationships and the

dynamics between them. As it is a simulation-based life-cycle, we also need to instan-

tiate the simulation features of this application. This includes defining in which order

the entities are created and started, if they are stepped in a sequence or in parallel.

After this, all the actions an agent or environment can perform have to be identified.

There are two types of actions: the internal actions are the actions of the agents and

the environment, and the external actions are the input for the system.

The SSOA is a simulation-based life-cycle, therefore we need to know a priori how

the simulation of these models will be validated. Therefore we need to finish the SSOA

instantiation w.r.t the validation method. This can be accomplished by first modeling

a corresponding reversing action or set of actions for each action. SSOA provides a

validation method through the MANAGER component that uses those reverse actions

so the system can roll back if it enters in a undesired state. An example of reversing

action is to move back to a position.

At this point we have modeled all the entities and their dynamics including self-

organizing patterns. Now we can start modeling the desired guarantees which we are

aiming for, through which we can assess the results of the simulations. We can do this

by defining the state variables of the agents and environment. They will be composed to

monitor the desired guarantees. We finish the SSOA instantiation w.r.t the validation

method by modeling which subset of states of the system need to be matched. Then

the MANAGER component will be able to run the state evaluation. This means that

it will analyze all the global states already reached and will verify which subset of

the states matches the set of guarantees for the macro properties that represents the

desired behavior.

The Testing phase consists of running the simulation itself. However before that,

it is necessary to provide scenarios. A scenario is a suitable set of parameters for

the model. They depend on the kind of the simulation and, as we are dealing with

self-organization and distributed control, some parameters are expressed in terms of

occurrence rates [6]. The use of scenarios and simulation also enables the engineer to

gather meaningful statistics about the macroscopic properties. Since it might be diffi-

cult for the engineer to put together a single, all-encompassing scenario, a simulation

can be developed using accumulated results from other scenarios to obtain average-case

metrics. Therefore, random events are generated according to predefined probabilities.

Thus, events that occur very rarely can be assigned very low probabilities while others

are assigned higher probabilities, and with the random selection of events this becomes

realistic.

The required macroscopic properties are engineered in an iterative process. This

is an iterative method, because it is possible the desired guarantees defined for the

model built in the Design phase can never be satisfied. In this case, the MANAGER

component retains the knowledge of all accepted and reverted actions. The MANAGER

component has a key function in this process, since it speeds the process by enabling to

identify which local behavior should be remodeled, and start the process again. Hence,

the design discipline uses the testing results to get feedback and adapt the design to

steer toward the required solution.

Moreover the MANAGER component also provides hooks for doing self-configuration

in the simulation. Therefore, as we can customize this behavior depending on the model
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being analyzed and design the MANAGER component to change the input parameters

for the external actions if a set of roll backs was performed. It can speed the simulation

process even more in the case of testing several scenarios at once.

4.1 MESOF Component Description

The MESOF component encapsulates a Multi-Environment Self-Organizing Frame-

work. It provides the hierarchy concept of environments in self-organizing multi-agent

systems, i.e., it allows the modeling of multiple environments with different structures

in a single simulation. MESOF also provides a set of coordination components that

assist in the engineering of self-organizing mechanisms.

4.1.1 MESOF Meta-Model

The MESOF meta-model is described in this section. Figure 5 illustrates its structural

and hierarchies and is explained through the features that correspond to the architec-

ture requirements as follows:

Simulation Features

The abstract Simulation class represents the simulation itself and has control of

the simulation. It encapsulates the main environment (represented by the Environ-

ment class), being able to access its state. Another duty of the Simulation class is to

give a unique identifier about the current simulation state. It will allow the Manager

Component to monitor and rollback the simulation states when needed.

The Environment manages the Schedule of its entities when it is started by the

Simulator. And, for each time step, it manages the entrance of Entity and schedules

each new added entity. The entities being scheduled could be executed in different

modes such as an ordered sequence, random sequence or parallel sequence.

Coordination Features

The Entity class is an abstract class that represents any entity that exists in the

Environment. In a situated environment, the Agent holds a Location in the Environ-

ment. This class cannot be directly instantiated, rather, to do so through the Agent

and Environment specialized classes.

The abstract Agent class represents the agent that can be either an active or

reactive entity. It can observe and act in the Environment (sensing and producing

events), always with a proposal of achieving its goals or reacting to events. An agent

is able to: communicate with other agents and the environment, and to move between

environments. The abstract Environment class is an active entity and, therefore, it is

a specialization of the Agent class. If the Environment is a situated environment, it

manages the Space in which the agents have a specific Location. Each Location can be

given to an agent, a sub-environment, or events to be sensed by other entities.

An event (Event class) is any information fired by an Agent or Environment. It

can be sent to the environment directly, to a specific location so all the agents in this

location can perceive the event, or directly to an agent. The listeners (EntityListener,

EventListener, AgentListener and EnvironmentListener) are interfaces that allow any

element interested in these entities or events to be notified.

The AbstractAction class represents an action that own a source entity (the action

performer) and a target entity (the action receptor) that can be either an Agent or
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an Environment. Each subclass Action must have one or a set of ReverseAction(s)

because they will be called by the Manager Component to perform rollbacks in the

simulation. An Action does not require reverse behavior only if it is not interesting for

the Manager Component to analyze it (when it has no impact in the system).

Regarding a situated environment, the coordination is achieved using directly com-

munication (through treating events as messages) and indirectly communication through

propagation of events in the neighborhood in 2D/ 3D and discrete/ continuous grid.

Moreover, there is a specific type of event, called Positional Event, which can be prop-

agated instead of a regular event. The Positional Event has a time to live in the envi-

ronment. Therefore, if an agent takes too many time steps to reach the source location

of the event, it might have disappeared. This is useful for the Diffusion pattern, for

instance, and for its combination with other patterns.

Another important principle of the MESOF Component that allows the coordina-

tion to be flexible and fast is that the space of the situated environments are considered

sparse fields. Therefore, many objects can be located in the same location and differ-

ent search strategies can exist for each entity type. The MESOF also provides a set

of neighborhood lookups for each environment type such as: get agents at a node/

position, get agents within distance, get events at location.

Furthermore, the Agent and Environment use the Template Method design pattern

in order to implement the invariant parts of the common behavior:

– Agent: step template method

This template method first, post all events. Then, for each perceived event, the

agent tries to handle this event. If the event was handled, notify all the event and

agent listeners.Then, do agent behavior.

STEP(s)

input: Simulation s

1 count := events.size

2 for (i := 0; i < count; i++)

3 e := events[i]

4 if (doHandleEvent(e, s))

5 e.notifyHandled(this)

6 for (EntityListener listener in listeners)

7 if (listener instanceof AgentListener)

8 listener = (AgentListener)listener

10 listener.eventHandled(this, e)

11 events[i] := NULL

12 i := i - 1

13 count := count - 1

14 doBehavior(s)

– Agent: doHandleEvent ”hook” operation

Handles an event. Return true if and only if the event was handled. Otherwise,

return false. If the event was not handled, it will be kept in the queue so it can be

handled at a later step.

– Agent: doBehavior ”hook” operation

Performs any activities other than handling events. Note that this method is only

called when the agent has no event left to be handled.

– Environment: doBehavior override

All the subclasses of Environment have to call the doBehavior implementation of
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the Environment class. The Agent and Environment subclasses might need to use

the reference for the simulation, therefore, this override has the simulation as an

input. The dead structure is a hash that contains the received and handled events.

If the event was received by an entity but not handled, it will not be added to the

dead hash. Otherwise, it will be added and at the end will be removed from the

location. This algorithm propagates all the event of a specific location to all agents

at the same location.

doBehavior(s)

input: Simulation s

1 dead := new HashSet<EventV>()

2 for (Location l in locations)

3 content := locEvents.get(l)

4 dead.clear()

5 for (Event e in content)

6 entities := getOtherEntitiesAt(l, e.getSource())

7 for (Entity entity in entities)

8 if ( ((Agent)entity).receiveEvent(e) )

9 if (not e.update())

10 dead.add(e);

11 for (Event event in dead)

12 content.remove(event)

Multi-Environment Features

Regarding the multi-environment features, at the meta-model we have the simulator

engine that schedules the main environment. All the agents and sub-environments

on the main environment are scheduled by the main environment and added to the

simulator engine depending on their states. The environment state is dynamic and if

one agent leaves the environment or moves itself, the environment state changes.

We have seen that the environment is locally observable to agents and if multiple

environments exist, any agent can only exist as at most one instance in each and

every environment. In self-organizing systems, the environment acts autonomously with

adaptive behavior just like agents and interacts by means of reaction or through the

propagation of events.

The meta-model provides the AgentNetwork and EnvironmentNetowrk abstract

classes for situated environment using a graph network, which is represented by the

class Network. This class handles the addition, removal and search of agents and events

in a graph network with a double point location.

The meta-model also provides the Agent2D and Environment2D abstract classes

for situated environment using a discrete 2D double point grid, which is represented

by the class Grid2D. This class handles the addition, removal and search of agents and

events in a double point location.

Regarding the 3D environment, the meta-model provides a 3D continuous space

through the ContinuousGrid class, and the entities are represented by a triple (x, y,

z) of floating-point numbers. All the agent-environment relationships and simulation

schedule described for a non-situated environment is reused in these components.
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4.2 Manager Component Description

The continuous style box shows that an application can be totally decoupled from

the Manager Component (see figure 4), if desired. I.e., the application, which is a

self-organizing multi-agent system to be simulated, can instantiate MESOF and run

without instantiating and turning on the Manager Component. However, it is a con-

straint to design the agents and environment to realize the Action interface provided

by MESOF in order to be able to activate the Manager in the future. The Manager

instantiation consists of realizing the Goal interface.

4.2.1 Manager Meta-Model

Validation Features

The Goal interface defines a desired guarantee (figure 6). In the planning context,

a goal is satisfied when one or more state variables have optimum values. A set of

goals (GoalSet class) can be used when it is necessary to define more than one desired

guarantee. The goals are the method pillar. The system can only be considered valid

if all goals are satisfied.

When an action is performed, the Manager has to evaluate if this action contributes

to the goals defined or if it leas the simulation to an undesired state. The Manager

class is the central class of the Manager Component. This class unifies all the auxiliary

resources to monitor and validate the simulation.

The mechanism starts with the Manager being notified about an action execution

or an environment step (see figure 7). This is possible because the Manager realizes the

ActionListener and EnvironmentListener interfaces. After this, the process is divided

by two execution flows:

1. If the verification was started because of an action execution, the Manager checks if

the goal (or set of goals) is satisfied. And the three execution flows can be executed:

a.If the goal is satisfied, the cycle returns with success and the action is accepted.

b. If the goals was not satisfied, the Manager tries to revert the current action. If

the action is reverted, the cycle returns with success.

c. Otherwise, if the action could not be reverted, then the cycle returns with error.

2. If the verification was started because the environment step, including all its entities

steps, has finished, the three execution flows can be executed:

a.If the goal is satisfied, the cycle returns with success and the step is accepted.

b. If the goals was not satisfied, the Manager tries to revert the current step,

including all entities steps. If the step(s) is(are) reverted, the cycle returns with

success.

c. Otherwise, if the step(s) could not be reverted, then the cycle returns with

error.

4.3 A Framework that Implements SSOA

To demonstrate the feasibility of the SSOA, an object-oriented framework in Java

that implements the SSOA components was developed: in [13], [7] one can find the

implementation of the architecture’s core. The framework shows a concrete design

of the architecture and supports the development of simulation-based self-organizing

multi-agent systems that help with the engineering of self-organizing systems design.
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The MESOF component was built on top of MASON [15] that offers many interest-

ing resources for simulating multi-agent systems in a discrete and event-based manner

as two- and three-dimensional visualizations, charts and reports construction, video

recording and much more. The entities being scheduled can be both executed in all

modes provided by MASON library, i.e., sequential types and parallel sequence.

If we take a look in the figure 5, the Simulation, Schedule, Steppable and Stop-

pable classes were replaced by the corresponding MASON classes and we specialized

the Simulation class (which is called SimState in MASON) with more functionalities

specified in SSOA description. Also Network and Grid2D classes were implemented

through the existent classes in MASON. On the other hand the ContinousGrid class

had to be created. All other entities did not exist previously in MASON.

Developing the framework was a valuable experience. It is worth saying that several

versions of the case studies were developed in order to reach the final architecture here

proposed and that enable the framework development [16]. Furthermore, the framework

development has improved our general understanding of important aspects of self-

organizing systems such as the state of the environment, multi-environment hierarchy,

the coordination and information flows design and the application of a middle-out

approach that relate the micro and macro level to validate and sometimes to speed the

design solution development. We also learned that deriving a concrete design from the

architecture is not self-evident, in particular because there are different environment

structures, and it requires a lot of effort and expertise of the designer.

4.4 Implementation Blueprints

In this section we present some implementation blueprints to be considered when im-

plementing and instantiating SSOA.

4.4.1 How to initialize the simulation

First the Simulator controller must instantiate the Environment during initialization.

This will represent the main environment. Then other entities can be initialized then

after this when needed. Still during the simulation initialization, if the Manager Compo-

nent will be activated, the following code should be added to initialize this component

and activate it:

Simulation class

void INIT()

...

Manager manager := Manager.getInstance()

manager.addListener(this)

manager.init(goals)

void START()

...

Manager.getInstance().start(this)

This ensures that: there are only one instance of the Manager in the simulation

(Singleton pattern), that the simulation is a listener of the Manager (in order to gather
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statistics about number of actions or steps reverted or accepted, and the goals were

passed to the Manager initialization. Also all the external actions have to be created

during initialization.

When instantiating the start() method of the Environment class , if overridden,

must be called by the start() method implemented by the subclass. It starts the existent

entities of the environment.

4.4.2 How the Manager knows the action to revert

If one action needs to be reverted, the Manager must have a reference to this class.

Therefore, each time that an Action is instantiated and executed, it has to be added

to the Agent actions list.

1 MyAction action := new MyAction(source, target)

2 actions.push(action)

3 action.execute(simulation)

As an observation, when creating an Action be sure that all the previous attributes

state are recorded and passed to the ReverseAction class during its instantiation, so it

is able to rollback the state of all changed attributes.

5 The Case Study

To evaluate the feasibility of the Simulation-based Self-Organizing Architecture, we

have developed some prototype systems that instantiated the framework that imple-

ments the SSOA. In this paper we present the results achieved to the AGV problem.

The objective with this evaluation is to show the use of the middle-out approach with

the validation method going from the specification to the experimental results.

The case study is structured as follows: (a) the design and architecture instantia-

tion, including internal and external actions description; (b) validation instantiation,

including state variables, goals and state evaluation; and (c) experimental results. The

experimental results are described with the same methodology as follow: first we de-

scribe the scenarios, then we describe the scenarios that were not validated by the

SSOA Manager and the scenarios that were validated, and a comparison of some of

them w.r.t the desired guarantees. Finally, we finish the evaluation presenting the re-

sults regarding the Manager overhead during the simulation execution.

5.1 The Automated Guided Vehicles

There are three main entities in the process of the AGV transportation system:

1. Pickup station: represents the beginning of the transportation task. Pickup sta-

tions receive new loads to be dispatched and transport requests are sent to the

vehicles. For simplification, all the loads have the same priority. This means that

any available vehicle will transport the load at the nearest pickup station.

2. Drop station: represents the end of the transportation task. Drop stations are al-

ways waiting for new loads routed by the vehicles. For simplification, all the drop

stations can receive any load.
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3. Intermediate station: represents the factory internal stations were vehicles move

throughout.

4. Vehicle: an automated vehicle must to be able to receive a request for routing, to

move in the environment, enter/ leave the pickup and drop station, pickup a load,

drop off a load, and route a load.

5.1.1 The Design and Architecture Instantiation

In the AGV transportation system the main environment is represented by the Ware-

house class, which is a situated 2D environment and manages the factory layout where

the stations are (see figure 8). The stations are non-situated sub-environments of the

Warehouse. Hence, they have a location on it according to the specified layout. The

vehicles are agents represented by the AGV class and they move from one location to

another in the Warehouse. The gradients are events that the agents (vehicles) perceive

while they move, and are represented by the Gradient class, which extends the Event

class from MESOF. It was necessary to define some fields in this class as magnitude

and angle, so the vehicles could reason about them. Moreover, a FailableState class

was defined, because any vehicle or station could be in a failure state. Both the Pick-

upStation and DropStation have a device for exchanging loads. Because of this the

LoadStation class was created.

In [14] and [9], the authors proposed to use gradient fields to help on the decentral-

ized control. In physics, vector fields are often used to model the strength and direction

of some force, such as the magnetic or gravitational force, as it changes from point to

point. The association of these vectors in each space position allows the identification

of the source coordinate direction. Therefore, the emission of gradient fields can be

used to enable the dispatching and routing with decentralized control. Each gradient

is emitted by a different entity and with different proposals as follows:

1. Pickup Gradient (load gradient) is fired by the Pickup Station in order to notify

that there are loads to be dispatched. This gradient is propagated by the Inter-

mediate Stations and, as far from the Pickup Station, the weaker the gradient is.

Therefore, each vehicle have to calculate the resultant gradient when handling the

gradient.

2. Drop Gradient (drop gradient) has the same essence of the pickup gradient, how-

ever, they are fired by the Drop Stations in each time step. The function of this

gradient is to route loaded vehicles to the correspondent Drop Station in order to

drop off the load.

3. Vehicle Gradient (agv gradient) is a gradient that avoids collision between vehicles.

Their magnitude is negative hence repeal other vehicles while they are moving

throughout the warehouse.

Internal and external actions

All the vehicles and stations share two external actions represented by the Fail class

and Recover class (reverse action of the Fail action). A probability rate was defined as

an input parameter to start the Fail action. Another probability rate was defined as

an input parameter to start the Recover action.

The PickupStation class has as external action the creation of a load (CreateLoad)

executed by a human that add new loads to be transported by the vehicles. And this

load is removed from this station by a vehicle through the execution of the ReceiveLoad.

Besides this if a PickupStation is active, which means that is not in a failure state and
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has loads to be dispatched, it is always firing load gradient event. The DropStation is

the one on which the enqueue of loads is an internal action (DeliverLoad) executed by

a vehicle. Besides this if a DropStation is active, which means that is not in a failure

state, it is always firing drop gradient event. Beyond the ReceiveLoad and DeliverLoad

actions, the vehicle (AGV class) has the Move action and its reverse action. All the

actions have their corresponding reversing actions.

5.1.2 Validation Instantiation

State Variables

All the vehicles and stations share the failure state, that can be either healthy or

with failure. The stations have another state variable: the number of loads. The vehicles

have two more state variables: the location and loading state. The latter reports if

the vehicle is carrying a load or not. There are three macroscopic state variables to

be monitored: (i) the total number of loads waiting to be transported at the pickup

station; (ii) the total number of loads transported by the vehicles; and (iii) the time

span for transporting each of them.

Goals and State Evaluation

To achieve the two macroscopic properties defined: routing and dispatching, we need

more than guarantees about delivering all packets any time, we want it to be as fast

as possible. Therefore, we need statements that assure the desired evolution of the

average, and those statements represent the macro properties. While figure 9 illustrates

the SSOA instantiation, the statements are presented as a description of the instantion.

1. The system is guaranteed to have a monotonically increasing loads dispatching

throughput.

The dispatching throughput measures how long a load waits to be dispatched at a

pickup station and it can be calculated as follows. Let the QSi be the queue size

of a pickup station i, k the number of pickup stations, the dispatching throughput

DT at a given time step x is given by:

DT (x) =

k∑

i=1

(QSi(x)−QSi(x− 1)) (1)

If DT (x) > 0 it means there are more loads coming than being dispatched. If

DT (x) < 0, there are more loads being dispatching than coming. Because we want

the later, we need to minimize the normalized measure of DT regarding a trial of

N simulations, this gives:

min DTN(x) =

N∑

i=1

DTi(x)

N
(2)

This goal and state evaluation instantiation are represented by the MaxDispatch-

ingThroughput class and have the following algorithm :

MaxDispatchingThroughput class

boolean isSatisfied(s)

input Simulation s
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1 warehouse := s.getEnvironment()

2 prevDT := ( s.prevDT == null ? 0 : s.prevDT)

3 for each pickupStation in warehouse

4 DT := DT + pickupStation.getLoadCount() -

pickupStation.getPrevLoadCount()

5 if DT-prevDT > 0

6 nbrOfPositiveTimes := nbrOfPositiveTimes + 1

7 if nbrOfPositiveTimes > threshold

8 return false

9 s.prevDT := DT

10 return true

Where the threshold is a parameter that says how many times it is allowed to have

an increasing behavior. If never is desired, it should be initialized with 0.

2. The system is guaranteed to have a monotonically increasing loads routing through-

put.

The routing throughput measures the routing rate of a load from the moment a

vehicle gets a load and delivers it at the drop station. It is calculated based on

the aggregation of the number of loads at the drop stations divided by their cor-

responding routing time. Let RT be the routing throughput at time step x, the

QSi be the queue size (number of loads) at the drop station i, and ∆tj the time a

vehicle took to carry the load j:

QS =

w∑

i=1

QSi(x) (3)

Where QS is the total number of loads of all drop stations,

∆tA =

∑w
j=1 ∆tj

QS
(4)

Where ∆tA is the average time span for routing a load, and we want to maximize

this:

RT (x) =
QS

∆tA
(5)

We need to maximize the normalized measure of RT regarding a trial of N simu-

lations, this gives:

max RTN(x) =

N∑

i=1

RTi(x)

N
(6)

This goal and state evaluation instantiation are represented by the MaxRoutingTh-

roughput class and have the following algorithm :

MaxRoutingThroughput class

boolean isSatisfied(s)

input Simulation s

1 warehouse := s.getEnvironment()

2 prevRT := ( s.prevDT == null ? 0 : s.prevDT)

3 for each dropStation in warehouse

4 QS := QS + dropStation.loadQueue.size
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5 for each load in dropStation.loadQueue

6 T := T + (load.deliverTime() - load.dispatchTime())

7 if QS>0

8 TA := T / QS

9 RT = QS / TA

10 if RT-prevRT < 0

11 nbrOfNegativeTimes := nbrOfNegativeTimes + 1

12 if nbrOfNegativeTimes > threshold

13 return false

14 s.prevRT := RT

15 return true

Where the threshold, like the previous goal, is a parameter that says how many

times it is allowed to have a decreasing behavior. If never, it should be initialized

with 0.

5.1.3 Experimental Results

For this problem it is possible to set up 250 (two hundred and fifty) different scenarios:

one for each combination of 1 to 5 pickup stations, 1 to 5 drop stations, and 1 to

10 vehicles. We ran 30 simulation executions of 1,000 steps. And we collected and

normalized the state variables and desired guarantees for the state evaluation. To

describe the results, we chose 3 scenarios we found interest and sufficient to analyze: 5

pickup and drop stations, with 5 vehicles; 5 pickup and drop stations, with 8 vehicles;

and 7 pickup and drop stations, with 3 vehicles.

In figure 10 we show the routing throughput that measures the routing rate of a

load from the moment a vehicle gets a load and delivers it at the drop station. The

best scenario was with 8 vehicles and 5 stations of each type. The results show how the

scenario is set is crucial to the model and how the variables behave w.r.t the gradient-

based self-organizing mechanism. Regarding the dispatching throughput (Figure 11),

which measures how long a load waits to be dispatched at a pickup station, the results

showed us that the best scenario was also with 8 vehicles and 5 stations (negative

values).It is important to notice that we only plotted the behavior of the other two

scenarios (5 vehicles and 5 stations, and 7 vehicles and 3 stations) because we wanted

to compare the results. To do this, we had to turn off the Manager, because during the

normal process, the Manager reverted several steps for those scenarios, until finding the

scenario where the goals were satisfied. Those two scenarios hadn’t the goals satisfied.

5.2 Manager Overhead

As a final evaluation, we present in this section the manager overhead analyzes in

the simulation process. Figure 12 shows the comparison of the simulation performance

considering the Manager on and the Manager off. The rate was defined as how much

time a simulation step lasts in seconds. Thus the lower the better since it means we have

a fast simulation. We computed the metric for the AGV case study. If the Manager is

off, the step lasts in average 20 seconds. While when the Manager is on, the step lasts

in average 120 seconds. As it is shown, the Manager’s performance must be improved,

since the difference was on average six times higher. Of course that once we have the
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distributed parallel architecture, this wouldn’t be a problem. But, for the simulation

to run in a single computer, one may care about these results.

6 Related Work

While there is plenty of literature about the analysis of self-organizing and emergent

mechanisms, the interest in engineering aspects grew only recently.

In this section we only summarize those works about self-organizing systems that

are strictly related to the design of self-organizing systems, architectures, and validation

or verification methods applied to those systems.

Parunak [17] describes several optimization algorithms for which an environment

is needed but does not provide an architecture or middleware.

Omicini proposed TuCson [18], a middleware that allows the coordination of parallel

processes (agents) through tuplespaces which can be seen as early (and ongoing) work

to provide an environment wherein agents can interact. Mamei et al. [10] provide a mid-

dleware environment, called TOTA, which allows agents to coordinate their movements

in a mobile network. Both TOTA and TuCson do not provide architectural simulation,

multi-environment and validation features. And, finally, Weyns [8] proposed a refer-

ence architecture for situated multi-agent systems that includes a set of self-organizing

features and considers the environment as a first-class abstraction. The reference archi-

tecture provides a set of mechanisms for architectural design, including: environment

infrastructure for perception, action, and communication; laws that constrain the ac-

tivity of agents; dynamics in the environment [19], [20], [21]; virtual environment [22];

selective perception [23]; advanced action selection mechanisms with roles and situated

commitments [24], [25]; and protocol-based communication [26]. However, the focus of

this architecture is to support the design from the agent-environment models to the

deployment level. It was not designed to support discrete simulations, and it does

not exploit different environment structures, or validation support.

Luca Gardelli [6] proposed a meta-model and a methodological approach for en-

gineering self-organizing multi-agent systems. The meta-model is based on stigmergy,

i.e, indirect communication where individual parts communicate with one another only

by modifying their local environment. Artifacts are first-class entities representing the

environment which mediates agent interaction and enables emergent coordination: as

such, they encapsulate and enact the stigmergic mechanisms (diffusion, aggregation,

selection, etc.) and the shared knowledge upon which emergent coordination processes

are based.

Gardelli also proposed a simulation approach. The models are analyzed using

stochastic simulations (stochastic Pi-calculus [27], [28] and the Stochastic Pi-Machine

(SPiM) [29], with the goal to describe the desired agent behavior and a set of working

parameters. These are calibrated through a tuning process. Gardelli partially formally

modeled three self-organizing applications and analyzed the system-wide behavior that

address qualitative simulation. He integrated a formal model approach with configura-

tion or parameter tuning to accomplish the verification of the macroscopic behavior of

self-organizing multi-agent systems and thus proving their correctness.

De Wolf [9] has proposed agent-based simulations combined with numerical anal-

ysis algorithms for dynamical systems verification at macro-level. By using a quanti-

tative validation method, De Wolf applied the equation-free approach, first proposed

by Kevrekidis [31], as the verification technique. In scientific computing research, there
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exists a whole store of numerical analysis algorithms that support the analysis of the

system dynamics and which have a mathematical foundation. Typically, these are ap-

plied to formal equation-based models. The ”Equation-Free Macroscopic Analysis” ap-

proach supports the empirical application of these analysis algorithms without needing

a formal equation-based model. In fact, the evolutionary equations are replaced by

small simulations of the system evolution, considering some input parameters. This

technique results in more valuable and advanced verification results and are supported

by dynamical systems theory.

De Wolf did not provide an architecture for this approach neither support for the

simulation, coordination and multi-environment features. However, De Wolf’s valida-

tion method is complementary to the validation method proposed in this work. The

scientific numerical analysis algorithms could be encapsulated in the Manager in a way

that they could be easily executed and re-initialized to different application domains.

7 Conclusions and Future Work

Self-organization and emergence are important aspects of decentralized distributed

systems. Through the applicability of self-organizing mechanisms, distributed systems

can have decentralized control and increase in robustness. Although self-organization is

an old biology concept, it is not a mature computer science concept, and the community

that investigates the particularities of its usage in computer systems is still quite small,

and mostly associated to the Distributed Systems area.

We believe the widespread of building self-organizing emergent systems depends

on software engineering techniques and this was the focus of the research presented in

this paper. This research represents a step toward the advances on architectural design

of self-organizing emergent systems. The contributions of this work are twofold:

1. We applied an agent-oriented technology to build self-organizing emergent systems.

This technology provides a Simulation-based Self-Organizing Architecture (SSOA)

and best practices as reuse and modularity. This architecture provides an asset

base engineers can draw from when developing self-organizing applications. The

application of the engineering guidelines and simulation-based self-organizing ar-

chitecture in a well known self-organizing problem is a contribution. Finally, none

of the architectures or middleware presented in the related work section were de-

signed to support discrete simulations and they do not exploit different environment

structures. Therefore, we can clearly observe the need and contribution of an in-

tegrated architecture which encompasses both simulations, environment structures

and dynamics, coordination components, self-organizing and validation mechanisms

support as it was proposed in this work.

2. In order to use an agent-oriented technology, validation architectural features for

validating emergent behavior of multi-agent systems was proposed. Regardless self-

organizing mechanisms, agents in multi-agent systems need to be coordinated in

some way, and those customizations help on this task. Also, emergent behavior is

an inherent multi-agent system characteristic, and the validation method helps on

the monitoring and controlling of agents misbehavior.
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7.1 Future Directions

This work has uncovered some problems to be solved, which are listed below. Some of

them are current ongoing work.

The main directions in which the SSOA architecture can be evolved is twofold:

regarding the self-organizing patterns, and the Manager component w.r.t the validation

method. A catalog of self-organizing patterns can be encapsulated in SSOA architecture

allowing the software engineer to easily instantiate them in specific problems.

Regarding the Manager component, a set of debug improvements can be encapsu-

lated in a way that the Manager could provide causality relations between local actions

that could not be accepted with regard to the specific macroscopic properties.

Also, the entropy concept can be introduced. From [30], [32], [33], (spatial) entropy

is suitable to reflect the spatial distribution of entities between different states and it

is defined as:

E =
−∑N

i=1(pi × log pi)

log N
(7)

Where pi is the probability that state i occurs and
∑N

i=1 pi = 1. Dividing by log N

normalizes E to be between 0 and 1. Entropy is high (close to 1) when the considered

states have an equal probability to occur, and low (close to 0) when only a few of the

states have a high probability to occur. De Wolf applied this measure to the distribu-

tion of AGVs: the different states for the entropy measure are defined as the desired

situations for the AGVs. And considering the AGVs are already distributed between

the desired situations. The probability for such an AGV to be in one specific desired

situation at one moment in time is used as the probability in the entropy equation.

Therefore, if the SSOA provides specific interfaces for instantiating this operator,

the Manager could be able to evaluate the system w.r.t the entropy and re-initialize

the simulation adaptively. In addition, the scientific numerical analysis algorithms used

by De Wolf (and other related ones) could also be encapsulated in the Manager in a

way that they could be easily executed to different application domains.

Another future direction is to provide a transparent distributed parallel simulation

middleware. In 2D or 3D situated environments, regardless of the visualization process,

one requirement is the space management. In a sequential simulation this does not

incur in a problem because each request is treated in the order of arrival. However, in

a distributed parallel environment requests may arrive at any time, so it is necessary

to provide a solution for concurrency.

To achieve this goal, we have being investigating on how to provide the capabilities

for the proposed architecture to become a distributed and parallel solution, in the sense

that it could work on a cluster environment in order to achieve better processing times

or larger problem sizes. The goal for this new architecture is to provide the user with:

the solution in less time, or; a solution to a larger instance of the problem in the same

time frame.
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Fig. 1 Coordination Support for Feedback Loops
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Fig. 2 The Multi-Environment Perspective

Fig. 3 The Multi-Environment Perspective: a)Graph: each agent or sub-environment can be
located in a node and perceives its neighbors; b) 2D double point grid: each agent or sub-
environment can be located in a discrete 2D double point position in the grid; c)3D continuous
grid: each agent or sub-environment can be located in a 3D floating point grid.
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Fig. 4 The SSOA Components

Fig. 5 The MESOF Meta-Model
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Fig. 6 The Manager Meta-Model

Fig. 7 The Manager Life Cycle
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Fig. 8 The AGV Class Diagram (partial view)

Fig. 9 AGV Goals and SSOA Manager Component instantiation
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Fig. 10 Routing throughput analysis

Fig. 11 Dispatching throughput analysis

Fig. 12 Manager overhead in the simulation
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