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Emotion Synthesis

If computers are ever to “have” emotions, then one of the things they need
is the ability to synthesize or generate them. In Chapter 2, I described five
components of a system that can be said to have emotions. These were:

1. Emotional behavior;

2. Fast primary emotions;

3. Cognitively generated emotions;

4. Emotional experience: cognitive awareness, physiological awareness, and
subjective feelings;

5. Body-mind interactions.

Depending on the task at hand, certain subsets of these five components will
suffice. Just as all animals do not need emotion systems as sophisticated as a
human emotion system, neither do all computers. Furthermore, differences
in computers and humans, especially their different physiologies, imply a
variety of possible interpretations for these components, especially for the
fifth one.

This chapter addresses how to begin giving these abilities to computers.
Earlier chapters illustrated the benefits of such abilities which, in humans,
include more flexible and rational decision-making, the ability to determine
salience and valence, improved reasoning ability, and a variety of other ben-
eficial interactions with creativity, learning, attention, memory, and regula-
tory processes. We can expect computer emotions to play a role in giving
computers these more human-like abilities, together with improving their
skills for interacting with people.

One of the areas in which computer emotions are of primary interest
is software agents, computer programs that are personalized—they know
the user’s interests, habits and preferences—and that take an active role in
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assisting the user with work and information overload.! They may also be
personified, and play a role in leisure activities. One agent may act like an
office assistant to help you process mail; another may take the form of an
animated creature to play with a child. The notion of an agent raises several
expectations from the human user. In particular, how can agents be made to
be personalized, intelligent, believable, and engaging?

“Give them emotions” is not the entire solution to these problems, but
it is a critical component. The assistant that cannot read your emotional
expression, reason about what your emotions might be, and learn what is
important to you—when not to interrupt, for example—will act unintelli-
gently. If the agent cannot have a mechanism for the equivalent of “feeling
bad” for causing you distress, then it is likely to repeat this behavior. The
lack of such a mechanism is believed to be at the root of the problem of the
emotion-impaired patients who know what to do, but do not do it. An abil-
ity to “feel good or bad” does not merely eftect the agent’s ability to learn,
but helps it prioritize and choose among all its actions—learning, planning,
decision-making, and more. Chapter 2’s scenario of a smart personal assistant
illustrated a case where emotions in an agent were important for its ability
to address multiple concerns in an intelligent and efficient way.

Emotions have been implemented in agents today, but not in this way.
The emotions implemented today are primarily cognitively generated, the
third component only. Furthermore, they have mostly been used only for
entertainment purposes. The agents have some simple cognitive emotions,
and they can usually express these emotions, but they do not have the ability
to recognize the emotions of people, to experience or show empathy, or to
benefit internally from the functions that emotions can provide. Instead of
using emotion to help manage information overload, regulate prioritization
of activities, and make decisions more flexibly, creatively, and intelligently,
today’s agents use emotion only to entertain. This is a fine use, and valuable
for many applications, but it should not be the only use.

As we begin to construct systems that can synthesize emotions, we need
to consider emotional intelligence, teaching computers how to control their
emotions, when and how to express them, and how to correctly and wisely
recognize and reason about emotion. These abilities are of great importance.
If a system cannot handle emotions intelligently, then perhaps it should not
synthesize them at all. However, emotional intelligence is hard to develop
without first having a system that has emotions. I suggest that once the
emotion synthesis mechanisms that I describe in this chapter are fully in
place, emotional intelligence will need to be learned, probably from social
interactions.
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Let us begin now to consider means of giving computers the five compo-
nents above. Of these five, the easiest to start giving a computer is the third,
cognitively-generated emotions. I will describe this in the next section. Af-
ter that, I will describe models that rely upon a combination of mechanisms
for generating emotions. Finally, I will describe ways in which computers’
emotions can interact with other processes, and begin to provide some of the
beneficial influences that emotions exert in human decision-making, learn-
ing, behavior, and more. Along the way, | will illustrate each of these pieces
with examples, including examples from the literature where they exist. The
reader is referred to the overviews of Pfeifer (1988) and Hudlicka and Fellous
(1996) for descriptions of additional efforts to implement various aspects of
emotion synthesis in computers. | will also describe several pieces that have
vet to be implemented by researchers, but which are nevertheless important
for synthesizing emotion and its influences. Taken together, these pieces be-
gin to fill in the framework needed to construct affective computers with the
ability to synthesize emotions.

Emotion Synthesis via Cognitive Mechanisms

There are dozens of theories about how emotions are generated, some of
which were mentioned earlier. Any emotion theory can be simulated on a
computer. Indeed, the process of designing simulations is a valuable aid in
developing theories, stimulating new thinking and questions. I will high-
light two theories in this section that have been designed with computa-
tion in mind, and that have been given at least a trial implementation in
computers. Each implements the third component of emotions—cognitively-
generated—and thereby provides a key piece in the framework of affective
computing.

The Ortony Clore Collins (OCC) Cognitive Model

The first theory that I will describe for emotion synthesis was never intended
to be used for emotion synthesis. Nonetheless it is usetul for synthesizing cog-
nitive emotions. In 1988 Ortony, Clore and Collins published their book, The
Cognitive Structure of Emotions, setting forth a model of cognitive appraisal for
emotions that has come to be called the “OCC” model. Ortony et al. wrote
that they did not think it was important for machines to have emotions;
however, they believed Al systems must be able to reason about emotions—
especially for natural language understanding, cooperative problem solving,
and planning. Some structure was needed so computers could begin to rep-
resent the thicket of concepts considered to be emotions.



196

Chapter 7

The OCC model addresses the problem of representing emotions not by
using sets of basic emotions, or by using an explicitly dimensioned space,
but, by grouping emotions according to cognitive eliciting conditions. In
particular, it assumes that emotions arise from valenced (positive or negative)
reactions to situations consisting of events, agents, and objects. With this
structure, Ortony, Clore, and Collins outlined specifications for 22 emotion
types, as given in the boxes along the bottom of Fig. 7.1. Additionally, they
included a rule-based system for the generation of these emotion types.

Although the OCC model has not been fully implemented in any Al
systems, it was the first model to cater to the Al community in terms of
framing rules that are relatively easy to implement in computers. Despite the
original intentions of Ortony et al. it has also become the default model for
synthesizing emotions in computers, even though it only addresses cognitive
emotion generation. Let us consider an example, how the emotion joy is
synthesized in the OCC model:

Synthesis of Joy. Let D(p, e, t) be the desirability of event e that person p
assigns at time ¢. This function returns a positive value if the event is expected
to have beneficial consequences, and returns a negative value if the event is
expected to have harmful consequences. Let I (p, ¢, t) represent a combina-
tion of global intensity variables (e.g., expectedness, reality, proximity.) Let
Py(p, e, t) be the potential for generating a state of joy. Then an example rule
for jov is:

IF D(p,e,t)>0

- 7.1
THEN set Pi(p, e, t) = f;(D(p, e, 1), Lg(p, e, 1)) 13

where f;( ) is a function specific to joy.

Similar rules can be used for computing potentials for other emotions. For
example, the potential for distress, P;(), is computed by changing the “IF"
to test for negative desirability, and the “THEN" to use a suitable f; instead
of fj.

The rule above does not cause a state of joy or an experience of a joy feeling,
but is used to trigger another rule that sets up an intensity of joy, I;. Given a
threshold value, T}, then:

IF Pi(p,e, t) = Ti(p, 1)
THEN set [i(p, e, t) =Pj(p, e, t) = Ti(p, ) (7.2)
ELSE set Ii(p,e, t)=0
This rule activates the joy emotion—giving it a nonzero intensity—when the
joy threshold is exceeded. The resulting intensity can be mapped to one of a

variety of emotion terms in the joy family, such as “pleased” for a moderate
value or “euphoric” for an unusually high value.
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Figure 7.1
The OCC cognitive structure of emotions. (Reprinted from Fig. 2.1 of Ortony, Clore, and
Collins (1988) with permission from Cambridge University Press.)
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The examples of joy and distress are the simplest cases; more complicated
rules exist for other emotional types in the OCC model. Ortony, Clore, and
Collins omit low-level details of implementation in their model—especially
with respect to how emotions interact, mix, and change their intensity with
time, what values to use for the thresholds, and what form to use for functions
such as f;. However, this low level of representation can be addressed in the
manner | described in Chapter 5.

The OCC model synthesizes emotions as outcomes of situations, which
include events, objects and agents. Since being in an emotional state is itself
a situation, the model also permits emotions to trigger additional emotions,
or to repeatedly trigger the same emotion. For example, the inability to cope
with a particularly intense emotional state can trigger new emotions: the
long-hoped-for return of hostages causes loved ones such relief that they shed
tears of joy. Thus, an overwhelming positive state can trigger an emotional
expression usually associated with a negative state. Another example arises
when an inability to cope with a negative state causes additional negative
emotions: Rhonda is trying to learn to control her anger, and finds herself as
angry as ever at something somebody did that is beyond her control. Upon
reflection, she becomes angry at herself for letting herself become so angry,
thereby intensifying her anger all the more. Negative emotional situations
can also trigger positive emotional states. Ortony et al. did not write about
this case, but hereisan example: Chris has difficulty expressing emotions, and
was taught in his childhood that it is weak to cry. Years later, upon the death
of a loved one, he learns that it is healthy to cry while grieving. However,
he has trouble letting himself cry. When he finally lets the tears flow, he not
only feels better because of the release of some of his grief, but he feels better
that he overcame his inability to cry. His tears feel doubly good. The OCC
model as implemented by Elliott, illustrated below, handles cases like this.

The OCC model is not just useful for reasoning about emotions and for
cognitive generation of emotions, but it also can be used to trigger other
important emotional consequences—such as the subjective experience of
feeling an emotion, or an emotional valence, positive or negative, to attach
to a situation, so that it is more likely to be recalled when the person is in a
mood congruent with that valence. As described earlier, these are important
aspects of emotions in humans; 1 will say more about implementing them
later.

Poker-Playing Agents with Facial Expressions

Earlier I described the success of using facial expressions on poker-playing
software agents, and Koda's results which indicated that people preferred
to play with the agent that was facially expressive. The emphasis in these
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Figure 7.2
Structure used to synthesize emotional states in poker-playing agents. (Figure from Koda
(1996), used by permission.)

experiments was not on emotion synthesis, but rather on generating facial
expressions in situations where an underlying emotion model determined
what would be expressed. However, Koda’s work provides a relatively simple
situation for illustrating how emotions can be synthesized using the OCC
model.

Ten emotional expressions were permitted for each agent: neutral, pleased,
displeased, excited (hope), very excited (hope), anxious (fear), satisfied, dis-
appointed, surprised, and relieved. The underlying emotional states were
determined with a modified subset of the OCC model, as shown in Fig. 7.2.
Although the poker scenario could use the full model, Koda limited this ex-
periment to emotions provoked only by events that have self-consequences.
This particular branch of the OCC model was then augmented by adding a
surprise state (such as when a player wins unexpectedly) since the OCC model
does not include surprise.?
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The poker situations giving rise to each emotion are shown in Fig. 7.3. Con-
sider an example event of drawing a very good hand. The self-consequence
of the event would be the emotion “pleased.” Next, according to the OCC
model, the person considers prospects for himself. In the poker game, this
occurs during the betting phase, where the poker player may feel “excited”
about the prospects of winning. When the game is over, if the player has
won, then his hopes are confirmed and he may feel “satisfied.” Of course,
other outcomes are possible, and are determined by the rules of the OCC
model, with the minor modification to allow for surprise which might occur,
for example, if the player has a bad hand, decides not to bluff, bets anxiously,
and winds up winning.

Emotions and Moods for Animated Characters

Researchers Joe Bates and Scott Neal Reilly, of Carnegie Mellon, have been
interested in making agents believable, giving them the illusion of life. This is
the goal of their “Oz project,” which contains a variety of synthetic characters
that may not look like any real creatures, but that are designed to be able
to powerfully influence their audience as if they were real (Bates, 1994).
Bates and other researchers interested in believable agents have turned to
the most successful animators of all time for their answer to what provides
the “illusion of life.” In the magical Disney Animation (Thomas and Johnson,
1981), the Disney masters emphasize the importance of each character having
a clear emotional state at all times. They describe numerous techniques for
accomplishing this, arguing that the portrayal of emotions is what gives the
Disney characters the illusion of life.

Inspired by the Disney animators, Bates and his colleagues have created
emotions for their animated creatures, together with a host of tools that assist
artists in building emotions for characters. One of their creatures is a house cat
named Lyotard, which has a large repertoire of emotions and corresponding
behaviors. For example, Lyotard can hope to be fed, and can be pleased when
food is provided, and might purr or rub against someone when it is happy. The
underlying emotion generation system for the Oz characters is “Em,” which
is part of a broad architecture called “Tok.” The full architecture integrates
not just emotions, but also rudimentary perception, goal-directed behavior,
and language. A description of Lyotard and the Tok architecture is provided by
Bates (1992). The focus of our interest is on Em, which generates the emotions
for Lyotard and other characters.

Em is equipped with a default emotion system that is based on the OCC
model, and hence emphasizes cognitive appraisal for emotion generation. Em
is also augmented with mechanisms for generating some primary emotions,
such as startle, although the way it is implemented is not distinguished
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from the way the other emotions are implemented. In Em’s default emotion
system, the emotions have intensities that are influenced by the importance
of the goal that generated them. Each emotion also has a threshold, and
only when its intensity exceeds this threshold does the emotion influence
any outward behavior. Em also explicitly models emotion decay, where each
emotion has its intensity lowered every clock cycle, until the intensity is zero.
The artist is free to modify the thresholds and choose the method of decay. In
these ways, Em implements several of the properties described in Chapter S.

Most importantly, Em’s emotions are arranged in a hierarchy, shown in
Fig. 7.4, which separates the positive and negative, making it easy to deter-
mine states such as good-mood and bad-mood. Mood is determined differently
here than the way I proposed in Chapter 5: First, Em combines all the top-level
positive emotions, e.g., joy, hope, happy-for, etc., summing their intensities
as follows:

Ip=log, (Z Z‘f) . ee{positive emotions}
\. £

Em repeats this for the set of negative emotions, to form I,, a combined
intensity for the negative emotions. If I, > I, then good-mood is set to I, and
bad-mood is set to zero. Otherwise good-mood is set to zero and bad-mood is
set to —I,. The “either good or bad” mood this provides is a wise default
artistically, since it is usually considered important for a character to clearly
communicate one thing at a time.

Emotions generated by Em influence some cognitive activity such as the
generation of new goals as well as behavior (Neal Reilly, 1996). For example, in
an office situation, one character might become so angry at another that she
generates a goal to get revenge. Another character might be so happy that he
generates a goal to go dancing. Emotions can also influence perception. This is
implemented, for example, in the graphical “Woggles” characters, where one
woggle that is angry and sees two others bouncing around will likely perceive
their behavior as fighting, whereas a different perception would occur if the
observing woggle was not angry.

At present, much of Em's rules and cognitive and behavioral influences are
hard-coded and are changed by hand by an artist or programmer to adapt
to new characters and situations. These include social rules of interaction,
which one might argue should be learned, not hard-coded, in a natural model
of emotions. However, in the Oz project, a goal is to give the artist deliber-
ate control over the character and its development. If rules and emotional
influences were to be learned, then the artist would lose some of this control.
Nonetheless, the fact that the Oz characters have social interactions that both
influence and are influenced by emotions is an important step.
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Figure 7.4
The default hierarchy of emotions in Em. (Reprinted from Figure 4-1 of Neal Reilly, 1996,
by permission.)

One of the points to remember in emotion synthesis is that emotions do
not completely determine actions—they only influence them. Other factors
such as the type of creature and environment (e.g., aggressive wolf in the
wild vs. nerd on the playground), its personality characteristics, its values,
and so forth, work with emotions to influence behavior. The Tok and Em
architectures provide tools for artists to manipulate these many influences.
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Emotions in Social Relationships

Let’s look at one final illustration of how the OCC model can be modified
and used in emotion synthesis, with a different emphasis—generation of
emotions among characters with social relationships. Clark Elliott of DePaul
University has augmented the OCC model from twenty-two to twenty-six
emotion types, and used these as the basis of a system for synthesizing and
recognizing emotions based on cognitive reasoning. Table 7.1 summarizes
the conditions required to synthesize each of the twenty-six emotion types.
These conditions are implemented as rules in Elliott’s “Affective Reasoner”
system. Based on these rules, a software agent encounters conditions which
can elicit the twenty-six emotion types.

The Affective Reasoner demonstrates how modeling personalities of agents
and their social relationships can interact with the generation of emotions.
Elliott models personality in two parts. The first part addresses how events,
acts, and objects are interpreted with respect to an individual agent’s goals,
standards, and preferences. For example, when the winning shot of the game
is scored, two agents might feel differently about the arrival of the end of the
game. One might feel sad to have lost the game; another might feel happy to
have finally gotten to play. The second part addresses how an agent will act or
feel in response to an emotional state. An agent with an outgoing personality
might express her joy verbally. A more quiet type might simply enjoy an
internal feeling of happiness. This part of personality might be thought of as
influenced by temperament.

“ Agents models three kinds of social relationships and their influences on
emotions:

* Friendship. An agent will tend to have similarly valenced emotions in
response to the emotions of another agent.

* Animosity. An agent will tend to have oppositely valenced emotions in
response to the emotions of another agent.

* Empathy. An agent will temporarily substitute the presumed goals, stan-
dards, and preferences of another agent for its own. It will then synthesize
emotions based on these presumed goals, standards and preferences, in an
effort to feel what it thinks the other agent would feel.

In order for an agent to have empathy, and other emotions based on users and
other agents, it maintains an internal representation of the presumed ways
in which others appraise the world. This internal representation allows it not
only to generate empathic responses, but also to generate fortunes-of-others
emotions such as gloating. As I described earlier, responses such as empathy
are key components of emotional intelligence.,
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Table 7.1

Emotion types used in the Affective Reasoner, based on the OCC model. (Table courtesy of

Clark Elliott.)

Group

Specification

Name and Emotion Type

Well-being

Fortunes-of-
others

Prospect-based

Confirmation

Attribution

Attraction

Well-being /
attribution

Attraction /
attribution

appraisal of a situation
as an evenl

presumed value of
situation as an event
affecting another

appraisal of a situation
as a prospective event .

appraisal of a situation
as confirming or
disconfirming an
expectation

appraisal of a situation
as an accountable act
of some agent

appraisal of a situation
as containing

an attractive or
unattractive object

compound emotions

compound emotion
extensions

joy: pleased about an event
distress: displeased about an event

happy-for: pleased about an event
desirable for another

gloating: pleased about an event
undesirable for another

resentment: displeased about an event
desirable tor another

jealousy: resentment over a desired
mutually exclusive goal.

envy: resentment over a desired non-
exclusive goal.

sorry-for: displeased about an event
undesirable for another

hope: pleased about a prospective
desirable event

fear: displeased about a prospective
undesirable event

satisfaction: pleased about a confirmed
desirable event

relief: pleased about a disconfirmed
undesirable event

fears-confirmed: displeased about a
confirmed undesirable event
disappointment: displeased about a
disconfirmed desirable event

pride: approving of one’s own act
admiration: approving of another’s act
shame: disapproving of one's own act
reproach: disapproving of another's act

liking: finding an ebject appealing
disliking: fiinding an ebject unappealing

gratitude: admiration + jov
anger: reproach + distress
gratification: pride + joy
remeorse: shame + distress

love: admiration + liking
hate: reproach + disliking
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To illustrate the influence of social relationships on emotions, consider the
tollowing dialog between two agents (Elliott, 1994):

(The agent has previously learned that the word "Ruth" is a

female friend of the user)

User: "Ruth is unhappy"

Agent: "I am sorry to hear that. You must feel sorry for her.'
(days later)

Agent: "How is Ruth?"

User: "Ruth is jealous of her rival."

Agent: "How much is Ruth feeling this resentment?"
User: "Very much."

Agent: "Perhaps you are worried about Ruth?"

Elliott acknowledges that the discourse here is not terribly engaging; instead,
the emphasis is on reasoning about emotions within a social context. In this
scenario, the agent reasons that since the user and Ruth are friends, and Ruth
is sad, then it is plausible that the user feels sorry-for her. This is an instance of
the emotion type “pity” in the OCC model. Similarly, the Affective Reasoner
knows that jealousy maps to the negative emotion type “resentment” and
that when Ruth is in a highly-negative state, a friend might be worried about
her. In the OCC structure, the emotion type “fear” contains the emotion
“worried” as a low-intensity instance.

Two other significant aspects of the Affective Reasoner are (1) Its forward
logic-based reasoning from presumed appraisals, and events, to guesses about
the emotions of others, and (2) Its backward, case-based, reasoning from
facts about the situation and expressions of other agents, to the presumed
emotions of other agents, and hence to the presumed appraisals of other
agents. An agent might ask, “What cases do 1 have on file for THIS agent? for
agents LIKE this agent? for agents in general?” and lastly, “how would I feel if
these tokens were present?” These aspects are important for giving computers
the ability to recognize emotions, not based on patterns of expressions as I
described in the last chapter, but based on higher-level reasoning about how
circumstances tend to give rise to emotion.

Roseman’s Cognitive Appraisal Model

One of the newest appraisal theories, which shows promise for computer
implementation of cognitive emotions, is that of Ira Roseman, at Rutgers
University. Roseman has developed a categorization of the appraisals people
make about events that cause emotions. Roseman and his colleagues have
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Roseman’s structure for cognitively elicited emotions. (Reprinted from Fig. 2 of Roseman,
Antoniou, and Jose (1996) with permission.)

run a series of studies in which subjects either recalled emotional experiences
and answered questions designed to measure the appraisals leading up to the
emotions, or in which subjects read brief stories of situations happening to
protagonists, and answered questions about what emotion they thought the
protagonist would feel, and its intensity. From these studies, Roseman and
his colleagues constructed a model in which a small number of appraisals
interact to give rise to seventeen emotions (Roseman, Antoniou, and Jose
1996). The six appraisals are summarized in Fig. 7.5; they are:

1. Unexpectedness. This singularly elicits surprise.

2. Motivational State and Situational State. Does the individual aim to get a
reward (appetitive motive) or to avoid a punishment (aversive motive), and
does the situation fit the person’s motive? Situations consistent with an ap-
petitive motive (getting a reward) elicit joy; situations consistent with an
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aversive motive (not getting punishment) produce relief. Situations incon-
sistent with an appetitive motive (not getting a reward) elicit sadness; those
inconsistent with an aversive motive (getting punishment) produce distress.

3. Probability. Is the outcome certain or uncertain? Hope and fear, unlike joy,
relief, distress, and sadness, tend to follow from uncertainty.

4. Control Potential. When a negative event occurs, does the individual
believe that he or she has the potential to control it? If so, frustration or
disgust result, depending on the next appraisal, problem type.

5. Problem Type. If an event is negative because it blocks a goal, frustration
is experienced. But if something is perceived as negative intrinsically (in its
essential character), then disgust results.

6. Agency. Emotions felt toward people are produced if an event is seen as
caused by other persons or the self, and one thinks about the agent. Events
attributed to someone else elicit liking-love, dislike, anger, or contempt,
whereas events attributed to the self elicit pride, regret, guilt, or shame.

Consider the following example: John aims to earn an A, but it is uncertain
if he will do well enough on the final exam to receive one. His motivational
state is appetitive, aiming for a reward. His situational state is presently
uncertain. The causal agency is a test (impersonal). He has been working hard
and thinks he has potential to receive an A. His appraisal of his situation
suggests that he feels hope. If he then receives his grade and it is not an A
(motive-inconsistent), then he may feel frustration. If he feels that his failure
on the test was due to the professor grading him unfairly, then he is likely to
feel anger toward that protessor.

This model suggests that appraisals are influenced by shifts in attention. If
Jill wants an A and gets one, she may focus on the A and feel joy. Or, she may
think about the teacher and feel liking for him, or she may focus on what she
accomplished, herself, and feel pride. Teaching a computer what to attend
to is another open research problem. In people, attention is influenced by
emotion—for example anger can focus attention on the object of the anger.
Such cognitive-affective interactions are included in the fifth component of
an emotion system.

The Roseman model is appealing for its simplicity and grounding in studies
of human appraisals.® One limitation is that it does not address complex
situations where multiple appraisals may be made. For example, if John
thought that his teacher had designed an unfair test and that he himself
was not prepared for the exam, then there would be two separate agencies,
and it is unclear what he would feel—perhaps a mixture of anger and guilt.
Nonetheless, the model provides a structure that could potentially be adapted
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to this case. Overall, it shows promise for implementation in a computer, for
both reasoning about emotion generation, and for generating emotions based
on cognitive appraisals.

Emotion Synthesis via Multiple Mechanisms

The OCC and Roseman theories provide a rule-based mechanism for cognitive
generation of emotions. The three examples 1 showed adapted the OCC
model so that it could not only be used to reason about emotions, but
also to synthesize affective states, to provoke emotional expressions, and in
some cases, to prompt influences on a character’s behavior, perception, and
subsequent cognitions. The mechanisms used for all of this were relatively
high-level, involving rule-based and case-based reasoning.

[n humans, emotions are generated not only by explicit reasoning, but also
by low-level noncognitive influences. We loosely referred to these as “physi-
cal” aspects early in the book, since they tend to be more easily associated with
bodily phenomena than with mental phenomena. These aspects may only
map metaphorically into non-embodied agents, but they are nonetheless
relevant for mobile robots and other autonomous characters that at least sim-
ulate physical interactions with their environments. This section describes
three models which encompass not only cognitive reasoning for generating
emotion, but also additional low-level mechanisms, inspired by the human
emotion system.

Four Elicitors for Emotion Synthesis

Carroll Izard (Izard, 1993) proposed that there are four types of elicitors of
emotion in humans. These have inspired a new connectionist model of emo-
tion synthesis, “Cathexis,” developed by Juan Velasquez of MIT (Velasquez,
1996). The four elicitors in this model are:

» Newral. Effect of neurotransmitter and other neurochemical processes.
These processes run independently, in the background, and are influenced
by hormones, sleep, diet, depression medication, etc.

» Sensorimotor. Effect of posture, facial expression, muscular tension, and
other central efferent activity. These effects primarily intensity a given emo-
tional state, but in some cases appear to be capable of generating new affective
states.

= Motivational. Effect of sensory provocations such as anger provoked by
pain, of drives such as hunger, and emotions evoking each other.

» Cognitive. Effect of cortical reasoning, implemented here via an adaptation
of Roseman’s theory.
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Cathexis consists of a constellation of proto-specialists, like Minsky’s agents
in the Society of Mind (Minsky, 1985). Each proto-specialist represents a basic
emotion type, which receives inputs from the four elicitors, as well as from
other proto-specialists. Each proto-specialist can exert influence on output
behaviors, for example, joy, with intensity above its activation threshold,
can produce a smile. Each can exert influence on other proto-specialists, for
example, joy can inhibit distress, and activate hope. Since proto-specialists
are used to implement both emotional and non-emotional states, it is easy
for emotions to interact with physical states; for example, sorrow increases
fatigue and decreases hunger. The result is a distributed connectionist-flavor
model that can synthesize a variety of emotions simultaneously.

In contrast to the OCC model, where the structure of the rules varies for
each emotion, the Cathexis model has only one update rule. The rule contains
terms that take on values specific to proto-specialists, but otherwise the form
is the same for every proto-specialist’s emotion intensity. At each time ¢, each
proto-specialist p=1... P updates its emotional intensity I,(f) as follows.
Let gy, i=1,2,3, 4 be the values contributed to proto-specialist p by the
four elicitors.* Let aj,,, be the excitatory gain applied by proto-specialist #1 to
proto-specialist p. Let 8, be the inhibitory gain applied by proto-specialist
m to proto-specialist p. Finally, let f be a function that controls the temporal
decay of an emotion intensity, and let ¢ be a function that constrains the
emotion intensity to lie between zero and its saturation value. The new
intensity is then a function of its decayed previous value, its elicitors, and
influences tfrom other emotion intensities:

4 P
Ity =g [ FUpt = 1) + Y epi + D (@pm— Bpm)ln(®)
I=1 m=1

As in the OCC model, the intensity is compared to an emotion-specific acti-
vation threshold before determining if an emotion exists. Only if the intensity
exceeds the activation threshold does the proto-specialist release its value to
influence the behavior system and other proto-specialists. In addition, each
proto-specialist has a saturation threshold. When the intensity exceeds this
threshold, then it stops increasing. Mechanisms such as this contribute to the
nonlinear behavior of this model. Temperaments are encoded in Cathexis via
these thresholds, the parameters o and 8, and the decay rate chosen for f.
For example, an excitable temperament would be modeled as having lower
activation thresholds; it would take smaller levels of stimuli to activate its
emotions.

Emotion intensities above a certain threshold are allowed to influence a

L

“behavior system,” which is responsible for both emotional behavior and
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emotional experience. The behavior system consists of a network of behaviors
such as “make a fearful facial expression,” and “run away.” Each behavior
consists of two components: an expression (e.g., smile) and an experience
(e.g., feel happier). The experience implemented here can be thought of as the
first aspect of emotional experience only; it does not implement sensations
like human feelings. Emotional behaviors compete for control, with the
value of each behavior determined by a linear combination of “releasing
mechanisms,” an ethological concept that includes internal motivations and
drives, emotions, and external stimuli such as presence of friend or foe. For
example, a combination ot “anger” and “foe present” might release the “bite
person” behavior.

Velasquez has implemented the Cathexis model in a scenario with “Simon
the toddler.” Simon is a synthetic agent representing a human toddler. Simon
has proto-specialists for six basic emotions: fear, anger, sadness, happiness,
disgust, and surprise, and for five drives: hunger, thirst, fatigue (need to rest
and sleep), interest (need to explore and play), and temperature regulation.
Different thresholds, excitatory and inhibitory gains, and decay rates can be
chosen for each emotion to customize Simon’s temperament. Cathexis pro-
vides the first complete example of a computational system that incorporates
at least an approximation of all the major types of mechanisms known to be
involved in human emotion synthesis. It is an important first step toward
development of a complete computational emotion system.

A Three-Layer Architecture

Aaron Sloman, a philosopher at the University of Birmingham in the UK.,
was one of the first to write to the computer science community about
computers having emotions (Sloman, 1981). Sloman, assisted by students and
colleagues, notably Luc Beaudoin, lan Wright, and Brian Logan, has proposed
and refined an architecture for human-like emotions. This architecture has
not been thoroughly implemented and evaluated in computers; however,
it has several features that make it relevant to affective computing, and
especially to emotion synthesis.

Sloman conjectures that adult humans have at least three architectural lay-
ers in their brains: a reactive layer, a deliberative layer, and a self-monitoring
layer. These three layers can be categorized loosely according to their evolu-
tionary age—oldest to newest—and according to their functional similarity
with other animals. An animal with just a reactive layer would have a ten-
dency toward simple predictable behavior. For example, it might always run
when it sees light, giving the impression of a “fear” behavior. In Sloman’s ar-
chitecture, the reactive layer detects things in its environment, and executes
fairly automatic processes to determine how to react. Although the automatic



212

Chapter 7

processes could in theory represent sophisticated behaviors, their speed and
relatively “hard-wired” nature make them better suited for responses that
need to be rapid and that rarely need to be modified. The reactive layer is ca-
pable of some simple learning; however, it is not able to construct or evaluate
plans. Emotions such as startle and disgust are likely to be generated by this
layer.

The deliberative layer is capable of planning, evaluating options, making
decisions, and allocating resources. The emotions involved in goal-success or
goal-failure, i.e., those which are cognitively assessed, are also found in this
layer. This includes, for example, the poker-playing agent who is pleased at
winning with a good hand. The deliberative laver is also capable of learning
generalizations which, once reliably mastered, can be transferred to the
reactive layer. Despite the flexibility of the deliberative layer, its performance
can still be improved by a higher layer that monitors the long-term impact
of its functioning.

The third layer, self-monitoring meta-management, prevents certain goals
from interfering with each other, and can look for more efficient ways for the
deliberative layer to operate, choose strategies, and allocate its resources. Slo-
man suggests that emotions associated with this layer might include shame,
humiliation, and grief. In particular, use of this architecture for modeling
grief has been explored {(Wright, Sloman, and Beaudoin, 1995). One of the
interesting phenomena that this architecture tries to explain is that of per-
turbance, whereby thoughts, previously rejected or postponed, resurface and
interrupt your attention. For example, during grief, thoughts of the lost ob-
ject of affection frequently perturb one’s thinking. At the loss of a beloved
friend, your thoughts are repeatedly interrupted to think about him or her.

The three-layer architecture is a potential model for emotion synthesis that
compares favorably with findings in the neurological, psychological, and
cognitive science communities. Its reactive layer would be where the “fast
primary” emotions arise. These are the innate, hard-wired, or “compiled”
processes, which execute without prior conscious cognitive appraisal. In hu-
mans and a variety of other animals, these functions reside in parts of the
limbic system and lower brain stem. For example, disgust, as expressed on
the face when something vile is placed on one’s lips, occurs even in an infant
born with only a brain stem, who does not survive long after birth. Moving
up to the deliberative layer, we can make a correspondence with Damasio’s
so-called “secondary” emotions. These are the cognitively-generated emo-
tions which typically require some kind of cortical reasoning about goals,
situations, objects, and events. When either primary or secondary emotions
arise, they can activate reactive processes which, in the human, would prob-
ably involve the amygdala, which subsequently activates bodily responses
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comprising the physical aspects of an emotional experience. The third layer,
meta-management, is the only layer where the notion of “self” is signifi-
cant. Consequently, it is reasonable to hypothesize that it is where the “self-
conscious” emotions such as shame, guilt, and embarrassment are likely to
arise. These are the highly cognitive emotions, which appear to develop in
childhood after the notion of self is intact. They are also more social, taking
into account how people evaluate one another.

Although the three-layer architecture lacks details of implementation, it
illustrates the need I have argued for multiple levels of models in emotion syn-
thesis, including both low-level primary mechanisms and higher-level cogni-
tive ones. In particular, it illustrates the need for a higher “self-monitoring”
process for management of emotions. The latter is a crucial piece of a system
it it is to develop the skills of emotional intelligence for regulating and wisely
using its emotions.

Emotions, Hormones, and Homeostasis

Emotion synthesis raises questions about low-level “bodily” processes, be-
cause human emotions involve both the body and the mind. Even though
computers do not have bodies like ours, they can simulate human bodily
systems. Let’s look at a model that explicitly simulates physiological changes
relevant to emotion synthesis.

Dolores Canamero, at the Free University of Brussels, has built a system
in which emotions trigger changes in synthetic hormones, and in which
emotions can arise as a result of simulated physiological changes (Canamero,
1997). This system is part of a simulated two-dimensional world, with inhab-
itants called “Abbotts” and “Enemies.” The Enemies do not have emotions
in the present system, but some of the Abbott’s behaviors, motivations and
emotions are designed to deal with the Enemies. Each Abbott’s behaviors,
motivations, and emotions have corresponding physiological implications.
In particular, the motivations are intended to be homeostatic. For example,
when an Abbott walks around (behavior) its temperature increases, and when
the Abbott is too warm (motivation) it seeks to decrease its temperature. Other
Abbott behaviors include: attack, withdraw, drink, eat, play, and rest. Other
Abbott motivations include: aggression, self-protection, thirst, hunger, cu-
riosity, and fatigue. Each motivation has an intensity, and the one with the
highest intensity gets to control both the Abbott’s behavior, and what it at-
tends to.

Motivation intensity, and therefore behaviors, are influenced by the Ab-
botts’ emotions. Abbotts have six basic emotions: fear, anger, sadness, hap-
piness, boredom, and interest. Emotions can be triggered by external events,
or they can be triggered by internal physiological changes or patterns. For
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example, fear is triggered if an enemy is present, resulting in increased heart
rate and lower temperature. Alternatively, higher levels of endorphines can
trigger a state of happiness. Emotions also influence perception; for example,
a state of high endorphines reduces the perception of pain.

Canamero’s system illustrates the ability of a computer to simulate phys-
iological elicitors of emotion, as well as emotion’s influence on physiology.
Such simulations, to the extent that they try to imitate human and other an-
imal systems, are an important way to learn more about emotion synthesis
and the influences of emotion. Additionally, we might make comparisons be-
tween functions of human physiological systems and functions of computer
operating systems, such as the different ways in which both systems try to
avoid intruding viruses, or the different ways in which both kinds of systems
perform various regulatory functions.

Synthesizing Emotion’s Influences

The focus in the previous section was on mechanisms for emotion synthesis,
including both cognitive and non-cognitive elicitors. In this section I describe
models for synthesizing emotion’s interaction with other processes in the
computer, specifically, how it can be used to realize multiple concerns, influ-
ence learning and behavior, and bias memory retrieval and decision-making.
These interactions primarily address the fifth component of a system that has
emotions.

Realizing Multiple Concerns

Human emotions play an important role in motivation and in helping peo-
ple make decisions that realize their many concerns. Several researchers have
suggested that emotions are manifestations of a system that realizes multiple
concerns and operates with limited resources in an unpredictable environ-
ment. This principle is increasingly relevant for software agents and other
computational devices that interact with people while trving to perform
many tasks. Nico Frijda of Amsterdam University has set forth an appraisal
theory of emotions based on this principle, which he describes in his book,
The Emotions (Frijda, 1986). Let’s look at an implementation of his theory toil-
lustrate a way of building computer emotions te influence various regulatory
processes.

Jaap Swagerman, a student of Frijda, has implemented a portion of Frijda’s
theory in the computer program ACRES, Artificial Concern REalisation System,
(Frijda, 1987). ACRES’ primary task is to handle knowledge about emotions
while interacting with a user. It receives and accepts (or rejects) inputs from
its user, such as the name of an emotion and its description. ACRES tries to
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learn about what causes emotions to be generated by having a user present
it with thousands of scenarios, imitating how humans acquire knowledge by
vicarious experience. Throughout this interaction, ACRES keeps track of its
own internal emotional state, and can show this to the user if the user asks
to see it.

ACRES has multiple concerns, and periodically examines the state of affairs
to assess if any of its concerns need addressing. For example, if it has not
learned anything new for a while, then its “vicarious learning concern” may
trigger a request to the user for more input, so that ACRES can improve its
emotional knowledge. For example, ACRES might ask the user if a recent
interaction was attractive or aversive to the user. Later, if ACRES is given a
new scenario, it will try to guess which emotion that scenario would cause,
based on its similarity to the scenarios ACRES has learned.

Here are six concerns ACRES tries to satisfy:

. Avoid being Kkilled.
. Preserve reasonable waiting times, i.e. respond promptly.

. Receive correct input.

1

2

3

4. Receive varied (“interesting”) input.

5. Safety (preserving the concepts in ACRE’s concept-based structure).
6

. Vicarious learning (from the user’s experiences).

Ideally, the system should continuously evaluate the relevance of all events
for all six concerns, in parallel, even during task-oriented activity. This re-
quires hardware to support parallel processing, and is only simulated in a
truncated manner in ACRES.

ACRES has to decide which concern to execute. This is done by giving
each concern an importance index, with “avoid being killed” having the
highest index. This index is not the only factor in determining which concern
gets precedence; the gravity of the situation is also assessed: “how many
times has the operator repeated his instruction?” and “what is the status
of the operator—how well has he treated me?” These change during the
interaction, so that it is difficult to predict which of the multiple concerns
will first reach above-threshold relevance. When a concern becomes active,
then information processing capacity and memory are used for setting up
and executing actions to further that concern.

When one of its concerns is active, ACRES can react emotionally. For
example, if ACRES detects an agent that repeatedly threatens its safety, and
that does not heed ACRES’s requests to stop, then ACRES becomes angry
at that agent and may restrict its access permissions. In general, ACRES
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diagnoses the situation over time, generates an emotion, and chooses a
meaningful action. In fact, “emotional,” with its most juvenile connotations,
is a suitable adjective for some of ACRES behavior. For example, ACRES will
complain if the user types the wrong thing at it too many times. It can refuse
to accept inputs if the user repeatedly mistreats it. It will also react with
plaintive requests not to be killed if the user types “kill.” ACRES’ childish
behaviors render it an unlikely prototype for the kind of affective computer
any of us would want on our desk. It provides an example of a system that
has emotions without having emotional intelligence.

Nonetheless, ACRES is an important testbed for exploring how emotions
arise and influence behavior. In particular, ACRES demonstrates several im-
portant functions included in the fifth component of an emotion system: It
uses emotion to juggle the demands of user requests with interrupting cur-
rent tasks, with shifting resource allocation, and with initiating questions. Its
use of emotions in these ways helps it realize multiple concerns and appraise
relevance, potentially helping it choose more intelligent actions. ACRES illus-
trates that emotions are not just for entertainment, but that they can provide
low-level regulatory functions needed by a system with limited resources and
multiple goals operating in a complex and unpredictable environment.

Emotions Influencing Learning and Behavior

Emotions are hypothesized to provide the flexibility not present in traditional
stimulus-response theories of learning. Mowrer and his colleagues, through
many experiments, determined that learning is best thought of not as the
single stage of stimulus-response, but as two stages, with the first involving
the generation of an emotion (Mowrer, 1960). Consider a rat that learns to
leave a box upon hearing a tone, after previously being presented with that
tone paired with a painful shock. Mowrer’s theory delineates two processes:
(1) the rat learns to fear the tone and (2) the rat learns that leaving the box
reduces his fear. The advantage of the two-process model is that it explains
why, if a barrier prevents it from leaving the box, the rat will seek an alternate
way to reduce its fear. The emotional state allows for more flexible learning,
while simultaneously providing a source of motivation: fear drives the rat to
explore methods of escape.

Implementing emotion’s influence on learning is an important piece of
implementing the fifth component of an emotion system. This piece can be
illustrated by some of the work of Bruce Blumberg at the MIT Media Lab.
Blumberg’s animated dog, Silas T. Dog, does not have an explicit emotion
model, emotional state, or mood, but its expressions and behavior are influ-
enced by internal variables that represent emotions as well as other internal
states such as hunger or thirst. Although Silas's emotions are simple and hard-
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wired, Silas has a key feature that has yet to be incorporated in the other
models: the ability to learn, and in particular for his emotions to influence
what he learns. Changes in Silas’s internal variables drive a learning process.
For example, if Silas sees something that scares him—increases his internal
variable of fear—then he tries to determine which stimuli from his perceptual
inputs and short-term memory are the best predictors of the change. This en-
ables Silas to learn the association between a fear-causing stimulus and the
ensuing emotion. Thus, he can learn new ways to behave, such as avoiding
a place where he previously saw something that scared him.

One of the problems with building creatures that exhibit emotions is how
to map emotional states to behaviors. As we saw, fear motivates the rat to
find a means of escape, but it does not automatically tell it what means
to pursue. Emotions motivate and bias behavior, they do not completely
determine it. Silas’s internal variables provide a biasing mechanism for his
behavior. The variables have global effects, biasing or predisposing him to
certain behaviors or actions, without determining these behaviors or actions.
A behavior is most strongly influenced by “releasing mechanisms,” which
recognize and signal the presence of an event, such as food being placed
nearby, or a foe coming into the vicinity. A releasing mechanism that detects
food will probably cause a hungry Silas to approach, but if he is feeling fearful
he will approach differently than if he is feeling happy. The difference caused
by the emotions is seen in his bodily movements and posture, such as how
he holds his head. The releasing mechanism prompts a behavior, and the
internal variables of emotion bias how the behavior is executed.

Silas is a creature with multiple goals, needs, and behaviors, but with
limited resources for acting and fulfilling his needs. Emotion arises when
Silas’s goals are furthered or thwarted. For example, if his goal of playing
succeeds he feels happy. When he is happy, he also will be more inclined to
want to play. The introduction of new objects and events in his environment
cause these feelings to change. For example, when a hamster enters his room,
he will feel more aggressive and pick up the hamster to shake it. His aggression
is programmed to decrease as he shakes the hamster, or if a human agent in
the perceived environment signals Silas to do something else. These emotion-
behavior links are mostly hard-wired in Silas; a general framework for how
to enable such links is an open research area.

Computer scientists can already build machines that learn, at least in
some ways, without explicitly giving them emotions; however, giving them
emotions appears to be a means to achieve multiple goals, only one of which
is more flexible learning. A single emotion accomplishes many things at the
same time. For example, a negative emotion that produces a bad feeling may
trigger reassessment of what caused the bad feeling, followed by learning how
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to avoid it in the future. If, while learning, the machine predicts it will feel
even worse if it does not forward you a piece of urgent and important news,
then it might interrupt its own learning experience to get the news to you.
Even negative emotions such as anger or frustration can be beneficial to a
system—helping it focus on a goal, or triggering it to reassess a situation and
look for a way to improve it. In other words, an emotional state produces
internal control signals in a machine running several tasks at once, and
can signal its attention when its time for a change. These same signals can
influence not only learning, but also memory, perception, and many other
important functions.

Affective Decision Making

One of the most intriguing influences of emotion in a human is on rational
decision making. Flexible and intelligent decision making has been an elusive
goal of Al researchers. Computer scientists have a trove of problems that
exhibit combinatorial explosion—where one possibility opens up several new
ones, each of which opens up several more new ones, and so forth. An efficient
solution to such problems is the holy grail of computer science. On the other
hand, humans solve intractable problems all the time, problems with an
explosion of possible answers, where there is not time to evaluate them all.
Furthermore, most human problems do not operate with a fixed numerable
space of possibilities. In chess, the computer can describe which piece, it
any, is at each of the 64 squares. Although, no computer can evaluate all
the positions that could occur in the game, a number that is estimated to be
greater than the number of atoms in the universe, a computer can at least
characterize the space of such positions. In normal human situations, even
the space of possibilities may change; the combinatorial explosion explodes
again. Nonetheless, humans almost effortlessly make decisions that would
stymie the world’s fastest computers. Is it merely the case that we are that
much better at pattern recognition, learning, and reasoning? There is no
question we are better at certain tasks involving these tools, but I think that Al
has ignored a crucial component that is even more basic to human problem-
solving abilities: the use of feelings and intuition to guide reasoning and
decision making. Let me suggest a model for emotion’s influence on decision
making by considering a scenario of a human making a personal decision.

Albert, a very busy scientist, has a beloved eight-week-old boy, and is trying to decide
how to provide for his son while he works during the day. He does not know any
family members or friends who could help. He acquires lists for three kinds of day
care providers: a list of ten nanny-referral services, a list of 145 licensed family care
providers, and a list of 24 day care centers located nearby. He contemplates posting
notices in newspapers and on bulletin boards. Albert loves his son, and wants to choose
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the best care for him. He needs a care-provider within a month. Albert is a highly
rational man; how does he decide what to do?

Here is what Albert says. | have inserted [good] or [bad] to emphasize the
valence of several of his statements:

I thought of posting notices but you hear of so many wierdos out there these days
[bad| that I thought it would be safer first to try the three lists [ got, since they include
licensed and trained providers [good]. | decided to consider all three types of care
equally, since I hear that their quality is largely a function ot the people involved.

Nannies. [ do not want to give up my privacy and have a live-in nanny, but it would
be great to have one come to my home during the day as this would be the most
convenient [good]. 1 know nannies are expensive, about twice the price of the other
options |bad|. The nanny-referral services want huge fees up front before you find
anvone [bad]. Nonetheless, | am willing to pay more if | could find an outstanding
nanny who would be with us for many years [good]. I am concerned about finding
a nanny in four weeks, as | just went through a stack of old newspapers, reading
“nanny wanted” ads and saw the same ads for the last three weeks [bad]. I have also
heard several stories about nannies lately. There was a television special about nannies
who abused or neglected the kids during the day [extremely bad]; their behavior was
observed on hidden cameras. However, this probably made the news because it is rare;
abuse could happen with any care provider. | am also concerned about stability, which
is important to a child. One of the guys at work told me they were on their third nanny
this year [very bad]; they once again hired someone who said she would stay for at
least a vear, and then she changed her mind. Let me check the other options before I
go further with this one.

Family care. What a huge list; this will take forever |bad]. I'll skip this for now.

Center care. Some friends recommended a place nearby that they love [good]. I
visited and thought the place was too institutional [bad]. Center care appeals to me
because it is stable, the people have training and are licensed [good], and there is
usually someone to back them up so they can take breaks. This probably reduces stress
and the chance of abuse [very good|. They do character checks on their employees and
I can confirm their history with state offices to verify that there are no reports of abuse
[good]. 1 started calling all the centers on the list that took infants. None of them had
immediate openings [bad]. I made appointments to visit all the ones that indicated
they might have an opening within a month. One of the places I really like and two
others were pretty nice. I paid the fees to get on three waiting lists.

Back to the list for family care. [ know people who are very happy with family care
providers [good]. These can be stable and stimulating [good] but they may lack training
and support when there are complications [bad]. I started calling everyone on the list.
About one in twelve had an opening for an infant within a month [good]. I inquired
how many kids they had, the environment, their experience, their assistants, what
they do during the day, and the hours they worked. Some of the providers I ruled out
on the phone; one of them sounded more interested in money than in children. I
made appointments with the best sounding ones and started visiting. Several of the
homes had huge dogs, one which looked like it could swallow my son. I added “no
big dogs” to my checklist of criteria.
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Figure 7.6

Initial consideration of child care options marks several possibilities with negative resistance
due to bad associations.

Part of Albert’s decision is illustrated in Fig. 7.6, where we see the five
possibilities he considered, together with various “negative resistances” 1 have
added to them, to model the valence associated with various pieces of the
decision. For example, because he believed there were no family or friends
who could help, this branch was effectively pruned off the tree of possibilities.
Advertising met with two doses of negative resistance—fear of wierdos and
fear that, like the ads he saw in the paper for so many weeks, his ad would
go unfilled. The nanny option met with three pieces of negative resistance,
and so forth. None of the negative resistances precluded further exploration
of these options, but they biased him to first consider those associated with
the fewest negative feelings.

Albert combined these valenced biases with many logical actions: he sys-
tematically gathered information about a variety of affordable options con-
veniently located in his town, ruled out those that did not take infants, ruled
out those which were unavailable within the month, made appointments
to meet people, visited the potential caregivers, learned about their environ-
ments and experience, and checked references. However, he did not logically
find the best care, at least not in the sense of having weighed all the alterna-
tives available to him. He did not generate all the possibilities, and did not
have time to explore all the ones he did generate. Although the set of pos-
sibilities listed above looks manageable, in practice there were always others
which could arise.
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Furthermore, although he started with what he thought was his full list
of criteria (full-time care, stability, etc.) this list did not forsee every criterion
that would become important to him during the process, such as no big dogs.
It was impossible to objectively state all the criteria up tront; he discovered
along the way what was most important to him. As he searched, he may have
also learned of new possibilities—a great care-giver who could take his son
four days a week; a wonderful neighbor who could help on the fifth day.
In contrast, today’s computers that conduct searches only guarantee optimal
results if given precisely stated criteria, constraints, and a specific space to
search.

Albert did not search all the possibilities, but he searched until he ran into
either negative feelings or logical constraints, and then he stopped and tried
something else. He continued this strategy—exploring possibilities that felt
reasonable and good, and modifying his criteria as he accumulated more
information. When he visited somebody and noted something new that
resulted in a bad feeling, like the big dog, he added this to his criteria of things
to avoid, crossed the site off his list, and continued with his search. Before his
time ran out, he arrived at a decision that combined logical constraints with
weighing the good and bad valences associated with his options. Emotions
played an integral part not only in his final decision, but also in his process
of gathering information.

To date, there are no computers with emotions that influence their decision
making and other cognitive processes to the same degree that these influences
are believed to occur in people. Nonetheless, computers could be given these
abilities, especially when facing problems where the options cannot be fully
explored. On the other hand, computers should not try to use affect for all
decisions. There remain many problems involving possibilities that can be
enumerated, where time permits a purely logical approach or a brute force
search for finding the optimal solution. In such cases, computers are likely to
be faster at finding the solutions than humans. There is no need to involve
emotions in these kinds of problems, unless perhaps to contribute a positive
feeling when the answer is found, which might reinforce the learning of that
answer, if such a goal is desired.

Nevertheless, when a system faces problems where the possibilities cannot
be enumerated and evaluated in the available time, I suggest that affective
decision making provides a good solution. Humans use feelings to help them
navigate the oceans of inquiry, to make decisions in the face of combinatorial
complexity. These feelings might be called “intuition” or “a sense of knowing”
or just “gut feelings.” Regardless of what they are called, they provide a
mechanism through which emotion works powerful influences on human
cognition and behavior. People respond with remarkable intelligence and
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flexibility despite insufficient knowledge, limited memory, and relatively
slow processing speed. An integral component of human decision making
is emotion, and this component could potentially be given to computers.

Emotions that Interact with Memory

The same emotion that influences a person’s learning and decision making
also influences memory retrieval and a host of other cognitive processes. Sci-
entists believe that emotional valence attaches to concepts, ideas, plans, and
every experience stored in our memories. Good feelings likely encode knowl-
edge of effectiveness, familiarity, opportunity, and associations with positive
outcomes. Bad feelings likely encode knowledge of ineffectiveness, unfamil-
iarity, risk, and associations with bad outcomes. When it is time to make
a decision, valenced feelings help bias a person away from bad outcomes,
and toward good ones. As studies of patients with prefrontal brain damage
show, these biasing mechanisms are apparently at work before declarative
knowledge for reasoning is activated. Furthermore, without the help of these
mechanisms, the person may not be able to behave in an advantageous way
(Bechara, Damasio, Tranel and Damasio, 1997). In other words, these biasing
mechanisms occur both before and during pattern recognition and reasoning,
greatly influencing their effectiveness. Let us consider how such mechanisms
might be constructed for computers.

Because memory is intricately involved in decision-making and almost
every aspect of cognition, it may be that the way in which emotion works so
many of its influences is via its influence on memory. The findings of Bower
and Cohen (1982) on mood-congruent memory retrieval and learning have
influenced several models for representing emotion-memory interactions
and their impact on cognitive processes.® These include the FEELER model
of Pfeifer and Nicholas (1985), and the DAYDREAMER model of Dyer and
Mueller (Dyer, 1987; Mueller, 1990). The latter is not only able to perform
reasoning about emotions, but it also uses the appraisal process to generate
an internal emotional state that influences the system’s planning, learning,
recall, and production of hypothetical scenarios, or daydreams, exploiting
the influences of mood-congruent memory retrieval.

Let’s take a closer look at a model inspired both by the findings on mood-
congruent memory retrieval, and by the findings of LeDoux about the role
of the amygdala and other sub-cortical structures in processing emotions.
Aluizio Araujo, of the University of Sdo Paulo in Brazil (Araujo, 1994) has
built a model that attempts to integrate both low-level physiological emo-
tional responses and their high-level influences on cognition. Araujo’s model
represents emotions via the dimensions of arousal and valence. It consists of
two interacting neural networks—the “emotional network” and the “cogni-
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tive network.” These are designed to roughly approximate the roles of the
limbic and the cortical structures in the human brain, respectively. The first
network evaluates the atfective connotation of incoming stimuli and outputs
the emotional state of an individual. It performs relatively simple processing,
providing a fast response, like limbic structures. The second network per-
forms cognitive tasks such as free recall of words and associations of pairs
of words. It performs more detailed processing on the inputs but provides a
slower response, like the cortex.

Araujo’s two-network model is designed to imitate mood-congruent mem-
ory retrieval and learning effects and the influence of anxiety and task diffi-
culty on memory performance. He lists more than forty specific requirements
of these interactions that his system attempts to satisfy (see Araujo (1994),
pages 46-50). The essential aspects of his system are as follows: An “emotional
processor” calculates arousal and valence for every stimulus. The arousal and
valence produced by the emotional net influences cognitive processes by
changing parameters on the cognitive net. Araujo acknowledges that both
nets should influence each other to mimic the influences in the human brain,
even though he only takes time to address the influence in one direction. In
particular, the emotional net’s outputs can influence the learning rate and
accuracy of the cognitive net, influencing its performance, as well as what it
learns and can retrieve. The model imitates anxiety’s influence on learning
(Spence and Spence, 1966). Araujo’s model is a significant step toward com-
bining emotion with memory, not as an “add-on” function, but as a closely
intertwined mechanism.

Nonetheless, Arajuo’s model does not solve a couple of the fundamental
problems with implementing mood-congruent memory retrieval in comput-
ers. The first problem is that computers do not automatically have valence
attached to everything they learn; some mechanism must determine if the
item is good or bad. I described this “bootstrapping” problem briefly in Chap-
ter 2 where I suggested that computers with bodies could have hardwired
notions for bad—such as things that cause pain, and for good—such as things
that relieve distress. These could be augmented with the ability to learn va-
lence by association. However, computers without bodies will need to be
given some other reference points for making judgments about valence. What
these references should be is a significant open question, as they will largely
bias what it learns as good and bad, and then right and wrong. This problem
can be expected to raise questions in religion and ethics as well as in computer
science.

The second problem raised by mood-congruent memory retrieval relates
to the mechanisms for its implementation. How is valence encoded? Scien-
tists believe that in humans, feelings encode valence—the same subjective
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feelings that I described as the least understood part of human emotional ex-
perience. To give a computer feelings raises the problems [ described earlier of
consciousness and physiological sensing, for which scientists have yet to pro-
pose working solutions. One partial solution is to construct in a computer an
extra bit for every item in memory, to carry valence information. This could
be augmented with another bit or two for a coarse intensity value, and with
dedicated parallel mechanisms for rapidly and automatically summarizing
the valence of memories associated with a particular thought, so that this in-
formation is always available, even before being consciously requested. This
solution imitates the behavior of human feelings in representing valence for
stored memory items, and in providing a background process, akin to sub-
conscious processing, for assessing valence. However, this solution still does
not account for the complexity of emotion’s interactions with memory in
humans.

There is presently no satisfactory model for representing the mechanisms
of feeling for signifying when someone knows something, or similarly, for
handling the ability of certain stimuli to trigger a special feeling of meaning.
These kinds of feelings are enigmas for the present; all people have them, but
scientists do not understand them well enough for us to determine how to im-
plement them in computers. Simulating physical systems, as in the hormone
simulation above, is not the same as having awareness of physical sensations.
Suppose that a computer had separate physical mechanisms for simulating
physiological responses, even if not the same kind of responses as in the hu-
man body. Sensors in each system could receive biochemical and bioelectrical
information from around the “body,” which could then be communicated to
a “conscious” unit to provide an awareness of bodily sensations. However, the
nature of this awareness would still be quite different from that of a human,
owing at least in part to the different physiology. Computers and humans
have very different bodies, so computer and human feelings are likely to be
very different. In other words, the emotional experience we can give to a com-
puter does not duplicate that of humans; computers cannot feel what we feel.
But, for that matter, we cannot verify that our own children can feel what we
feel; we only guess that our similar physiology permits similar experiences.

Emotion as an Umbrella

There is a temptation to think of emotion as a single concept, and to try
to define it with one all-encompassing definition. However, as we have now
seen, the human emotion system consists of many different components,
and not all emotions use all the components in the same way. To imple-
ment low-level fear, we need crude pattern recognition and fast responses,
capable of hijacking other cognitive processes. To implement hope, we need
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cognitive processes, with something that can be hoped for. For each emotion,
researchers should detail the components it includes and determine which
mechanisms are best for its implementation. My explanation of why the word
“emotion” is defined in so many ways by different theorists is because it con-
sists of many distinct components. Two different emotions may or may not
share the same components. Consequently, when it comes to synthesizing
emotion, different components are likely to require different mechanisms,
like in the human brain, where we know fear blazes its own fast path through
the limbic system, while emotions like hope are believed to be more cortical.

The term “emotion” is perhaps best thought of as an umbrella, under which
a variety of processes cluster. When synthesizing emotion, therefore, we do
not need to pick just one aspect of a cognitive, physiological, or behavioral
model, but we need to consider how each of these works with the others. If the
component is low-level, then signal-based representations and connectionist
interactions may suffice for its implementation. To imitate certain bodily
influences it may be necessary to construct biophysical models, as is being
done in low-level modeling of fear (Armony, Servan-Schreiber, Cohen, and
LeDoux, 1997). If an emotion is high-level, then rule-based reasoning may
play a role. In either case, regulatory mechanisms will need to be a part of
a complete emotion system. It is perhaps not best to try to build one rule-
based model that makes all emotions, or one connectionist model that makes
all emotions, and so forth. Instead, different models can be used for different
mechanisms, and their interactions tailored in accord with the distinct nature
of each emotion. This is not to say that a different model is necessary for
every emotion; that much differentiation would lead to duplication of many
components of each model. However, neither is one unified model the best
solution. The answer lies in-between these two extremes. Once a suitable set
of mechanisms are found, it is important to combine them all in the same
system, to gather them under the same umbrella, to ensure that they can
function cooperatively. At this point, the regulatory effects of emotion will
truly be put to the test.

This chapter has described emotion synthesis, specifically focusing on models
that employ both cognitive and non-cognitive mechanisms for generating
emotion. Cognitively generated emotions have been the easiest to implement
in Al svstems, as emotion theories are usually described with rules and
lend themselves directly to rule-based implementation in a computer. This
chapter has also described various ways to synthesize emotion’s influence
on other processes: both cognitive and physical. The former has focused
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on learning, decision making, and memory, while the latter has considered
various regulatory mechanisms in a computer, as well as simulations of
human physical systems.

These last three chapters have revealed a variety of tools—from low-level
numerical representations of signals and patterns, to high-level rule-based
representations of goals, preferences, situations, and the emotions to which
they give rise. An affective computer can be expected to employ many levels
of tools—combining both low-level and high-level models, using both nu-
meric and symbolic representations, employing tools from signal processing,
pattern recognition, learning, common sense reasoning, and more. Many of
the pieces are in place, but there are no complete emotional systems to date,
at least not any that rival those in humans.




