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a b s t r a c t

Metros are the principal means of public transportation in many of the world’s cities, and
continue to grow in the face of rising demand. Expanding metro infrastructure is costly,
however, and at a certain point becomes unsustainable. When this occurs the only feasible
solution is to improve the train’s management system by using either offline approaches,
such as pre-programming schedules which use historic information, or online approaches
which employ system status information obtained during operation. A new planning or
control system, be it on or off line, requires prior testing that usually involves conducting
simulations. This paper presents the design and implementation of an event-driven
dynamic simulator for multi-line metro systems, and its practical application for studying
different operating strategies. The simulator is based on object-oriented programming and
is capable of interacting with Matlab programs written by the user to design and evaluate
real-time control strategies. This article describes the model upon which the simulator is
based, presents the user interface, and demonstrates how to use the simulator for operat-
ing strategies evaluation in the Santiago de Chile multi-line metropolitan rail network.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Motivation

Transportation has become a major issue all around the world. Increased car usage has faced cities with the necessity of
improving public transportation systems. Many of the largest cities in the world have a mixed system comprised of buses
and light or metropolitan trains, both of which must serve a continuously rising demand. One option for serving this huge
demand is to expand the infrastructure; however, there is a practical limit in such a strategy particularly for train systems.
When it is not possible to continue expanding the infrastructure in terms of trains and stations, the only feasible solution for
serving the huge demand with an appropriate quality of service is to improve the train’s management system. This can be
done using offline approaches, such as pre-programming schedules; or online approaches which employ system status infor-
mation obtained online during operation, including trains’ positions, number of passengers at stations and on trains, and
eventual disturbances affecting the system’s normal operation. Both strategies rely upon a detailed knowledge about effects
that changes in operating policy have on the process, obtained from different sources such as operators’ experience, histor-
ical data, and simulation tools, among others.

In Santiago de Chile, the inauguration of the new Urban Transportation Plan has posed a major challenge for the city’s
metro rail system: in a very short period of time, the number of people it carries has nearly doubled. According to the Plan,
. All rights reserved.
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metro is supposed to be the system’s articulated backbone due to the way its routes are structured, its technological inte-
gration, and its efficiency in transporting large numbers of passengers. This heavy increase in the number of passengers
led to a decline in the quality of service that must be reversed. Several operating strategies have been studied and intro-
duced: infrastructure development, acquisition of new trains, redistribution of the fleet, increase in supply, and informa-
tional campaigns to promote a proper use of the service. One of the conclusions gained from this experience is that
advantage must be taken of available technology, like simulation tools, in designing and testing new strategies.

1.2. Related work

The introduction of a new planning or control system, be it on or off line, requires prior testing that, at least in the initial
stage, is not easy to carry out in the transportation system itself because of the costs involved and the effects on users. The
usual solution in these cases involves conducting simulations, and in fact there are many simulation platforms available for
these types of systems. One of these is OpenTrack, which is very useful for analyzing the effects of installing new infrastruc-
ture, establishing schedules, experimenting with different signal systems, and analyzing the effects of failures [1]. OpenTrack
is based on a microscopic model which simulates rail system operations using user-defined trains, infrastructure, and time-
tables. The software uses a mixed discrete–continuous simulation process and object-oriented programming. The purpose of
OpenTrack is to provide a microscopic platform for railroad simulation; therefore, is not suitable for analyzing strategies
which consider passengers. Another alternative, which focuses more on learning, is Bahn [2], a shareware program used
for designing and testing train or streetcar transportation networks. Although Bahn is able to simulate complex railway sys-
tems it is not designed to test operating strategies. RailSys [3], yet another software system, integrates a timetable and infra-
structure manager with synchronous microscopic simulation and automatic dispatching. RailSys has been successfully
applied in timetable construction, infrastructure planning, and planning of logistic for large scale projects. However, it is
not possible to include passengers in the analysis. [4] presents an alternative capable of single-train traction calculation,
multitrain simulation and timetable assessment. Other simulators have been proposed that focus on more specific issues,
like for simulating inter-modal cargo and passenger transportation terminals [5], or for visually modeling and simulating rail
services [6]. However, very few simulators make it easy to design and evaluate online control strategies. Many of the issues
involved are discussed in [7]. Examples of these platforms are the Quadstone Paramics [8] and PTV Vissim micro-simulators
[9], which are highly complex and costly and do not include specific support for metros. While these platforms are useful for
definitively validating the algorithms that have been created, they are not at all practical for carrying out rapid testing during
the development phase. One alternative is presented in [10], whose software system supports the generation of simulation
codes and is able to automatically define the skeleton of a code. The software allows the user to define the system as a whole
by using a relational scheme. It also allows describing the entities as a hierarchy of classes of objects. As case study timetable
generation and a control problem for an underground railway network are presented. Although the simulation strategy is
clearly stated, neither the model on which the simulation is based, nor the manipulated and measured variables are clear.

1.3. Paper objectives and organization

This article presents an event-driven, fast, and easy-to-use dynamic simulator for multi-line metro systems. The simula-
tor allows users to simulate complex metro systems having as configuration inputs: the time-variant passengers’ arrival rate
for each station, the origin–destination matrix, the number of trains per line, and parameters defining trains’ movement dy-
namic behavior, trains’ capacity, and crowd behavior. The simulator also allows manipulating during the simulations: the
train speed along routes, the holding time at stations, and the dispatch time for trains from terminal stations; using control
algorithms programmed in Matlab, a popular software package that is used for numeric calculations. The simulator is pro-
grammed in the C# language [11,12], which has the advantage of being easy to use, providing good support for object-ori-
ented programming and making it easy to develop graphic interfaces. The paper is organized as follows: Section 2 describes
the model of the metro system. Section 3 presents the programming and implementation of the simulator. Section 4 illus-
trates the application of the simulator in studying two different operating strategies on the Santiago de Chile multi-line
metropolitan rail network. Finally, in Section 5 conclusions are drawn and future work is proposed.
2. Modeling

In this section a general stochastic model for the whole metro system is developed. The system is characterized using
three main entities: passengers, trains, and stations. For modeling purposes the set of trains M and the set of stations S
are broken down into subsets Mi, and Si, respectively, each of them associated to a line i 2 I. Subsets of trains and stations
form a complete partition of the universes, which means that the intersection between subsets is empty and the union is
the universe. For modeling purposes trains are numbered from m = 1 to m = #(M) while stations are indexed consecutively
with 0 being the first station and #(Si) � 1 the last in line i. Then, each station is completely defined by the pair (s, i).

Each bi-directional line has the structure shown in Fig. 1, half the stations belong to each track, with the terminal stations
joined by track segments that represent the turnarounds which allow the trains to change from one track to the other. The
only care that must be taken is that origin–destination matrices do not allow passengers to travel from one track to the other.



Fig. 1. Structure of one line.
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Even though transfer stations belong to more than one line, in the model they are treated as independent stations and trans-
ferring effect is addressed as an extra arrival of passengers; thus, for modeling purposes, passengers can only travel between
stations belonging to the same line. Once passengers arrive at a transfer station, they are distributed according to the origin–
destination matrix of the arriving line.

Passengers arrive at stations according to a composite Poisson distribution with time-variable rates, meaning that they
arrive in variable-size groups separated by exponentially-distributed intervals of time. Arrivals are defined by the pair (kg,kl),
where kg is the mean size of the group, and kl is the group rate, thus, the equivalent passengers’ arrival rate is: k = kg � kl. In
order to consider the variability of metro systems demand throughout the day, which is related to rush and lull periods, the
model structure allows that the values of the arrival rates change at discrete time instants, yielding a time-dependent rate
k(t); in sake of simplicity the time index is omitted in the following.

The proposed model describes the behavior of multi-line metro systems using the parameters presented in Table 1 and
the state variables defined in Table 2.

The model is based on events related to arrivals of trains and passengers at stations. When an event takes place the sys-
tem’s state variables are updated in order to obtain the state of the system after the new event. What follows is a description
of the equations used.

Given a set of initial values for the states variables, the instant at which each train arrives at the next station is calculated
assuming constant train speed over the line segments between stations:
tnamðkÞ ¼ tamðk� 1Þ þ tdmðk� 1Þ þ Lðsamðk�1Þ;iÞðk� 1Þ
v ; 8m 2 M; ijm 2 Mi ð1Þ
In the same form, the instant at which passengers arrive at a station is calculated by generating realizations of the stochastic
process:
tnaðs;iÞðkÞ ¼ taðs;iÞðk� 1Þ þ g � expðkðs;iÞÞ; 8s 2 Si; 8i 2 I ð2Þ
Comparing these values determines the train m*(k) that arrives first at a station and triggers the next train event, or the sta-
tion (s*, i*)(k) at which passengers arrive and triggers the next passenger event, and also establishes the physical time t(k) at
which this occurs:
tðkÞ ¼ min
m2M;s2Si ;i2I

ðtnamðkÞ; tnaðs;iÞðkÞÞ ð3Þ
If there was a train event, the actualization procedure is as follows:
m�ðkÞ ¼ arg min
m2M
ðtnamðkÞÞ ð4Þ

tam�ðkÞðkÞ ¼ tðkÞ ð5Þ
i�ðkÞ ¼ ijm�ðkÞ 2 Mi ð6Þ
Since the triggering train has just arrived at a new station (s, i), its station index value must be increased:
sam�ðkÞðkÞ ¼ sam�ðkÞðk� 1Þ þ 1ðmod#ðSiÞÞ ð7Þ
The total passenger waiting time in person-hours is given by:
twðs;iÞðkÞ ¼ ðtðkÞ � tðk� 1ÞÞ
X
s12Si

psðs;iÞ;s1ðk� 1Þ; 8s 2 Si; 8i 2 I ð8Þ
The total number of passengers aboard the train at the moment it arrives is given by:
pmt�ðkÞ ¼
X

s2Si�ðkÞ

pmm�ðkÞ;ðs;i�ðkÞÞðk� 1Þ ð9Þ



Table 1
Model parameters.

C: Train capacity
k(s,i): Passenger arrival rate at station (s, i)
a, b, c, d: Coefficients determining train boarding and deboarding times.
M(s1,i1),(s2,i2): Origin–destination matrix elements indicating the proportion of passengers boarding at station (s1, i1) whose destination is station

(s2, i2)
L(s,i): Length of line segment following station (s, i)
v: Train speed between stations.
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Then, the total travel time is given by:
ttm�ðkÞðkÞ ¼ pmt�ðkÞ
Lðsam�ðkÞðk�1Þ;i�ðkÞÞðk� 1Þ

v ð10Þ
The number of passengers deboarding the triggering train is:
pdðkÞ ¼ pmm�ðkÞ;ðsam�ðkÞ ;i
�ðkÞÞðk� 1Þ ð11Þ
We then derive the available capacity and the passengers who will board this train following the FIFO principle:
c�ðkÞ ¼ C � ðpmt�ðkÞ � pdðkÞÞ ð12Þ
pbs1ðkÞ ¼ ps0ðsam�ðkÞ ;i

�ðkÞÞ;s1ðkÞ; 8s1 2 Si�ðkÞ ð13Þ
Where ps0ðsam�ðkÞ ;i
�ðkÞÞ;s1ðkÞ are the values for psðsam�ðkÞ ;i

�ðkÞÞ;s1ðk� 1Þ truncated to the available capacity c* using the FIFO principle.
Passengers getting off at the current station must be deducted from the total for the train, while those getting on must be

distributed among the stations they are traveling to:
pmm�ðkÞ;ðs;i�ðkÞÞðkÞ ¼
0 if s ¼ sam�ðkÞðkÞ
pmm�ðkÞ;ðs;i�ðkÞÞðk� 1Þ þ pbsðkÞ if s – sam�ðkÞðkÞ

(
; 8s 2 Si�ðkÞ ð14Þ
The number of passengers at the station is updated by deducting those who got on:
psðsam�ðkÞðkÞ;i
�ðkÞÞ;s1ðkÞ ¼ psðsam�ðkÞðkÞ;i

�ðkÞÞ;s1ðk� 1Þ � pbs1ðkÞ; 8s1 2 Si�ðkÞ ð15Þ
When a train arrives at a station, it must stay there for a minimum amount of time (dwell time). Dwell time is determined
using the model described in [13], which estimates the minimum time required for passengers to board and deboard as a
linear function of boarding passengers, deboarding passengers, and the total number of passengers who are at the station
and on the train, regardless of whether they board or deboard:
T ¼ aþ bpbðkÞ þ cpdðkÞ þ d
X

s12Si�ðkÞ

psðsam�ðkÞðkÞ;i
�ðkÞÞ;s1ðk� 1Þ þ pmt�ðkÞ

0
@

1
A ð16Þ
Then, the time that a train will stay at a given station is:
tdmðkÞ ¼maxðT;hm�ðkÞ;ðsam�ðkÞðkÞ;i
�ðkÞÞðkÞÞ ð17Þ
where hm�ðkÞ;ðsam�ðkÞðkÞ;i
�ðkÞÞðkÞ is the holding action applied to train m*(k) at station sam�ðkÞðkÞ; i�ðkÞ

� �
. All the non-updated vari-

ables, keep their values unchanged.
If there was a passenger event, the actualization procedure is as follows:
ðs�; i�ÞðkÞ ¼ arg min
s2Si ;i2I

ðtnaðs;iÞðkÞÞ ð18Þ

taðs� ;i�ÞðkÞðkÞ ¼ tðkÞ ð19Þ
The total passenger waiting time is updated:
twðs;iÞðkÞ ¼ ðtðkÞ � tðk� 1ÞÞ
X
s12Si

psðs;iÞ;s1ðk� 1Þ; 8s 2 Si; 8i 2 I ð20Þ
The arrivals psa0ðs� ;i�Þ;s1ðkÞ are determined by considering the group size and the origin–destination matrix. For each pas-
senger, his destination is obtained randomly by generating a process whose probability distribution is proportional to the
origin–destination matrix.

Then, the number of passengers is updated:
psðs� ;i�ÞðkÞ;s1ðkÞ ¼ psðs� ;i�Þ;s1ðk� 1Þ þ psa0ðs� ;i�Þ;s1ðkÞ; 8s1 2 Si� ð21Þ
All the non-updated variables, keep their values unchanged.



Table 2
Model state variables.

t(k) Instant at which event k occurs
sam(k) Index indicating station in which train m is located at time of event k
tdm(k) Passenger boarding and deboarding time at station in which train m is located at time of step k
ps(s,i),s1(k) Passengers on station (s, i) whose destination is station (s1, i) at time of event k
pmm,(s,i)(k) Passengers carried by train m traveling to station (s, i) at time of event k
tam(k) Moment of arrival of train m at the station in which it is located at time of event k
tw(s,i)(k) Total passenger wait time between events k � 1 and k in station (s, i)
ttm(k) Total travel time of passengers between events k � 1 and k in train m
ta(s,i)(k) Moment of arrival of passengers at the station (s, i) at time of event k
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3. Simulator programming and implementation

3.1. General design

The software SimDimMetro has been designed to simulate the global operation of a metropolitan rail system with a prop-
er level of detail. This makes it possible to conduct a satisfactory initial analysis of the effects of strategies like increasing the
number of trains in operation, injecting trains at different points along the line, etc., when faced with different conditions of
operation and demand, and for any initial system configuration. As outputs, a series of important indicators can be obtained
for system planning the most important of which are waiting times, travel times, and stations and trains occupation densi-
ties. The software also provides a description of the simulation’s total development for its subsequent analysis. The simulator
allows the user to fully define the fleet’s management strategy, using any desired degree of information available. This can
range from sticking to schedules planned beforehand, to complex predictive control techniques [14], with intermediate
alternatives like, for example, heuristics that only use local information from the station and/or train under analysis.

3.2. Programming paradigms

In order to implement the model, object-oriented programming [11,12] was used. This is a very popular programming
paradigm that consists of defining classes of objects specifically designed to carry out certain functions. Each class defines
a set of member data that represents all the information needed to define the state of an object from the corresponding class.
It also implements a set of member functions, or methods, that determine the object’s behavior, since they can be called on
by other parts of the program to act on member data. This makes it possible to modularize the code and allows the abstract
objects to constitute a suitable representation of real elements, like metro stations, trains, etc., that share a common class but
of which there are multiple instances or objects. Object-oriented programming has been successfully used on simulating
complex systems as power generating plants [15]. For the simulation, an event-driven scheme was chosen, in contrast to
the continuous simulation paradigm [16]. This means that, instead of integrating dynamic differential or difference equa-
tions that define the system’s behavior at each moment in time, the choice of the time interval between two steps of calcu-
lation is based on the behavior changes of the process and no longer constant [17]; thus, the processing is only conducted at
irregular moments of discrete time. At each of these moments, or steps, the system’s state variables are updated and the time
at which the next step should occur is calculated. What may happen between steps is not taken into account. The advantage
of this is to significantly reduce the processing capacity requirements, although details about the process are naturally lost.
The use of this paradigm is justified in the fact that all the major events in this application (trains’ station arrivals and depar-
tures, arrival of passengers, etc.) happen at well-defined moments, and what happens between two events, like for example
the exact way in which trains move along the tracks, does not greatly affect operating decisions.

3.3. Characteristics of the simulation

The software can simultaneously simulate any number of routes or lines that are connected by transfer stations. What
follows is a description of the diverse aspects of the simulator. The lines are bi-directional and can contain any number of
stations, including terminal stations at each end. The time in which trains move along lines and stop at stations depends as
much on passenger occupancy as it does on the control strategy used. The speed can be changed at discrete moments by
control actions, which means that there may be trains with different velocities. If a train arrives at a station where another
train is stopped, it switches to waiting mode until the station is clear, and then moves forward into the station. A similar
procedure is followed if one train catches up to another one along the line. There are maneuvering areas at the ends of each
line, which have space to store a number of trains as defined by the user. The control determines when to dispatch the train
that is first in line in the maneuvering area. In certain sections of the line between stations, the user can define lateral tracks
where trains can temporarily park. When a train is dispatched, the control system may determine that instead of functioning
normally, it should skip stations and detour to lateral tracks where it will stay parked until the control allows it to resume
normal operation. Lateral tracks make it possible to have trains waiting, and when certain parts of the line get overly con-
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gested, the train quickly moves to the congested part of the line without having to travel along the rest of the line. Passengers
arrival rates can be discretely varied throughout the simulation if the user so desires, as the user may specify different values
for different intervals of time. The parameters defining congestion effect caused by an excessive number of passengers are
parameters defined by the user. The destination station of passengers who board the train is determined randomly, based on
probabilities defined in the origin–destination matrix. When a train arrives at a transfer station, a set proportion of passen-
gers who deboard there transfer to the other line. Not all these passengers take the same amount of time to make the trans-
fer, and a delay effect caused by bottlenecks is taken into account if there is an excess of passengers. Travel times and dwell
times can incorporate a random component whose parameters are set by the user. The number of trains running and their
initial position are manually specified by the user, who can situate them initially at any station, section along the line,
branch, or terminal; indicating values like the time needed to arrive at the current station, or the initial position along a sec-
tion of line, allowing the software to decide how the trains should behave when the simulation begins. Fig. 2 shows a sche-
matic description of the simulation process.

3.4. Real time control

The simulator can operate in an open-loop or closed-loop mode. In the open-loop mode, all trains have a set speed, stop
for the predetermined holding or stop times at all stations, and when arriving at terminals, are dispatched from them at reg-
ular intervals. All the parameters that affect these actions can be set by the user. In the closed-loop mode, the simulator al-
lows the user to define control functions that, depending on the desired objectives, may include real-time information about
the operation. These functions must be programmed in Matlab using .m files, respecting the entry and exit variables defined
by the simulator. The simulator accesses Matlab services (and through these, the function written by the user) through the
Dynamic Link Libraries (DLLs) provided by Matlab. The control system can currently act on four types of manipulated vari-
ables: holding times, velocities along the line, times until the following train is dispatched from terminal stations, and times
until trains are dispatched from lateral tracks. The first two manipulated variables are defined for each train, while the third
is associated with lines and the last with lateral tracks. If the dispatch from lateral tracks is being controlled, the user can also
manipulate which trains will operate normally and which will be sent to one of these lateral tracks. Each time a train triggers
an event, meaning that it arrives at or leaves a station, arrives at a terminal station or at a branch, etc., the control system is
called upon to update all the manipulated variables. To do so, it gathers information about the status of the entire system,
and transfers this information to the Matlab user-defined function in the form of matrix-represented arguments. The control
system generates an exit matrix with all the manipulated variables whose values should change. The program immediately
makes the needed changes and then continues on with the simulation.

3.5. Operating interfaces and configuration

The main operating interface of SimDimMetro, shown in Fig. 3 for Santiago Metro network, is the core of the simulator
where the user can select different interfaces and configuration boxes; it allows the user to save and load configuration
Fig. 2. Description of the simulation process.



Fig. 3. Main interface of the simulator.

Fig. 4. Passengers’ arrival configuration window.
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parameters and initial conditions in the form of text files with extension .sis and .cis, respectively. It also allows the user to
define the parameters a, b, c and d of the dwell time model, and other general configuration parameters like simulation’s



Fig. 5. Origin–destination matrix configuration window.

Fig. 6. Initial conditions configuration window.
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start and finish times, and the random number generating seed. By clicking on different elements on the main screen, the
user can access interface windows and dialogue boxes to enter the corresponding configuration parameters and inputs
for the simulations.



Fig. 7. (a) Train parameters configuration window; (b) Transfer station configuration window.
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Fig. 4 shows the interface for defining passengers’ arrival rates for the different stations. This interface is accessed by
clicking on one line of the metro system, then choosing passengers configuration, and finally selecting the tab labeled as:
passenger arrivals. In the interface each arrival interval is defined by the time limits (the same for all stations of the line),
the group size and the arrival rate (different for each station).

Fig. 5 shows the interface where the origin–destination matrix for a given line is entered; this interface is accessed by
clicking on the corresponding line in the main interface window, then choosing passengers configuration, and finally select-
ing the tab labeled as: origin–destination matrix. Once the origin–destination matrix is entered, the following step is to input
initial conditions. Fig. 6 shows the interface where the initial conditions are defined. This interface is accessed by clicking on
the corresponding line in the main interface window and then choosing initial conditions. In this interface the user can con-
figure the number of trains and their initial position which can be at a station, on terminal, or in between two stations. Also
the user can configure the initial number of passengers in each train and on each station. Once the initial conditions are en-
tered, the user must define parameters that describe trains’ behavior and configure transfer stations. Fig. 7 shows the con-
figuration window for the parameters of trains belonging to a given line (Fig. 7(a)), and for the parameters of one transfer
station (Fig. 7(b)). Trains’ parameters required are: capacity, maximum speed, weight, and cinematic characteristics. These
parameters yield for all the trains in a given line. For transfer stations the user must enter the proportion of passengers who
transfer from one line to the other, and the parameters defining the time required for doing the transfer.

Similar boxes can be called up to define the control strategy. Fig. 8 shows the dialogue boxes for open-loop control
(Fig. 8(a)) and closed-loop control (Fig. 8(b)). For open-loop control, the user must define the speed, stop time at each station,
and the value of dispatch intervals. For closed-loop, or real time, control the user must provide the route of the Matlab file
that implements the desired control algorithm; also six user-defined constants can be introduced, if desired, for fast com-
munication between the user and the Matlab control algorithm. The simulation begins by clicking on the play button at
the main interface window.

Once the simulation is finished, the user can access statistics about the metro line or station, including: average passenger
waiting time (per station or for the entire line), average travel time, average occupancy of stations and trains, average fre-
quency of trains in a station, and total number of trains that must wait to enter a station because it is occupied by another
train. Fig. 9 shows the statistics for a given line (Fig. 9(a)) and a given station (Fig. 9(b)). In the results per station interface
(Fig. 9(b)) results are presented one by one. The user is able to change the station for which results are being presented by
selecting the desired station on the bottom status bar drop menu. Besides statistics, two types of graphic representation are
created after the simulation is finished. The first is a distance-time diagram for each line, an example of which is shown in
Fig. 10. In this graph, X-axis represents time and Y-axis represents the distance of the entire metro line; each line in the graph
represents a train as it moves along the metro line. The simulator also creates a graph of the number of passengers in each
station as a function of time, as shown in Fig. 11. In this graph light areas represents the time period when there is no train at
the station, and dark areas represents time periods when a train is at the station. Lastly, it is possible to save a register of the



Fig. 8. (a) Configuration window for open-loop operation; (b) Configuration window for real time control (closed-loop) operation.

Fig. 9. (a) Simulation results for one line; (b) Simulation results for one station.
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simulation’s development as a Matlab data file (a .mat file) where the user can check the temporal evolution of all the state
variables of the system.
4. Application example

As a case study, simulations of the Santiago de Chile Metro, formed by 5 lines (Line 1, Line 2, Line 4, Line 4A, Line 5), 93
stations, and 7 transfer stations are presented. Santiago de Chile Metro is the most important element of the city transpor-
tation system. Metro operates from 6:00 to 23:45 hrs on weekdays (8:00 to 22:30 hrs on weekends), and it transports 2.3
million passengers per day. Due to the importance of Metro several efforts have been done to improve operation in terms
of service quality, including the use of state of the art fleet management strategies and a continuous upgrading of the mea-
surement system. Metro measurement system identifies the hourly demand per station based on the use of electronic tickets
and pre-paid cards. However, destination stations can not be identified directly from tickets, requiring the use of estimations
that in this case are survey-based. Metro conducts surveys continuously during the year and constructs the origin–destina-
tion matrices, used on fleet management, based on these surveys.

The simulator was calibrated to simulate the entire network of the Santiago de Chile Metro using real time-variant pas-
senger arrival rates that correspond to a normal business day. Arrival rates of each station, are varied each 15 min during the
weekday time period: 6:00 to 23:45. Real origin–destination matrices obtained from surveys and real train and station
parameters are also used in calibration. In order to show how the simulator works, a comparison between the performance
of two simple real-time control approaches is proposed. Both approaches are based on regularizing the headway of station
departures, that is, the time between successive train departures from a given station. A classic result in transportation engi-
neering is that in a system without published schedules (which is generally the case with high-frequency systems such as a
metro) and a fixed average frequency (determined by the number of trains) the regularization of headways tends to reduce
passenger waiting times [18]. Thus, the performance of the two operating strategies is compared using passengers waiting



Fig. 10. Time–distance graph for one line.

Fig. 11. Passengers’ graph for one station.
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time as main decision criteria. The first strategy intends to maintain the headway constant, during all the simulated time, at
a specific value Hi for each line as shows Table 3. The second strategy also aims to maintain the headway Hi constant, but at a
value that depends not only on the line, but also on the hour, as shows Table 3. Both strategies use the following reasoning:
every time a train arrives at a station s of line i at a moment tarr, the moment when the previous train departs the same sta-
tion, tprev(si) is obtained from the measurement system. The holding hni

for the train n in line i is then calculated using the
following rules:
IF tarr P tprevðsiÞ þ Hi THEN hni
¼ 0 ð22Þ

IF tarr < tprevðsiÞ þ Hi THEN hni
¼ tprevðsiÞ þ Hi � tarr ð23Þ
This means that the control system will try to keep the station headway (the same for all stations belonging to line i) con-
stant by holding the train at the station. It is important to note that if the train arrives very late the holding is zero, so it can



Table 3
Headway per line [s].

Case 1 Case 2

06:00–10:00 10:00–12:00 12:00–14:00 14:00–17:00 17:00–23:45

Line 1 130 120 150 113 150 116
Line 2 175 138 200 180 200 158
Line 4 180 172 185 185 185 168
Line 4A 200 200 200 200 200 200
Line 5 145 120 160 160 160 125

Table 4
Simulation results.

Line 1 Line 2 Line 4 Line 4A Line 5

Case 1
Average passenger waiting time [s] 45.27 69.61 80.40 81.63 59.02
Trains’ average occupation [%] 10.72 9.39 5.31 1.63 7.28
Trains’ maximum occupation [%] 98.93 100 48.55 16.98 62.25

Case 2
Average passenger waiting time [s] 45.26 52.27 74.40 81.63 46.57
Trains’ average occupation [%] 11.21 11.05 5.46 1.63 8.32
Trains’ maximum occupation [%] 91.54 76.26 50.00 16.98 55.77
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move through the station as fast as possible, considering that it will need a minimum amount of time for all the passengers
to board and deboard.

Both control approaches were tested under normal operating conditions from 06:00 to 23:45 h. The parameters used for
the dwell time model were: a = 5 s, b = 0.01 s, d = 0.02 s, and c = 0.005 s. Table 4 shows the simulation results for the two
cases. It can be seen that when a variable headway strategy was used (case 2) the average passenger waiting time decreased
in the five lines. Also when the system was operated in a variable headway strategy, the trains’ average occupation increased
and the maximum occupation decreased (except for line 4) suggesting that under a variable headway strategy the system
operation is more efficient. Based on simulation results, it can be said that operating using an hourly-dependent headway
strategy improves the system performance not only from the user point of view (waiting time), but also from an operational
point of view (trains’ occupation).

5. Conclusions and future research

5.1. Conclusions

The event-driven simulator for multi-line metro system developed using object-oriented programming is capable of
reproducing the behavior of metro systems. It allows the user to calibrate the simulator with the desired time-variant pas-
senger’s arrival rates, origin–destination matrices, and train and stations characteristics. As outputs the simulator delivers
performance indicators, such as: average passenger waiting time, trains’ occupation, passengers’ behavior graph for a given
station, and time-distance graph for a given line, among others, useful for evaluating operating strategies.

The presented simulator simplifies some details involved in the operation of a metropolitan rail system, especially those
related to train dynamic motion along the line, in order to facilitate the programming and reduce computations. These sim-
plifications make it possible to conduct rapid simulations of complex systems, like the Santiago Metro network, while main-
taining the level of detail required for evaluating operating strategies which consider the system as a whole.

A simple application regarding a comparison between two holding strategies in the Santiago metropolitan rail network
illustrates the capabilities of the simulator in evaluating different operating schemes. Results show that operating using an
hourly-dependent holding strategy improves the system performance in terms of passengers’ wait time and trains’
occupation.

5.2. Future research

Future research includes the use of the simulator in designing and testing advanced control approaches for metro systems
by exploiting its ability to connect to Matlab. Also of interest is conducting a study regarding the effects of single- and multi-
line service interruptions and the strategies for returning to normal operation.

Future research should also address improving the simulator by adding the option of using detailed train motion models
in a continuous time simulation mode to study the optimal design of future stations or metro lines. An interesting additional
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development that is being considered for the future is the ability to connect the simulator through an interface to data avail-
able online, to create a decision-support system.
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