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Abstract 
 
Usability testing is an essential skill for usability practitioners – professionals whose primary goal 
is to provide guidance to product developers for the purpose of improving the ease-of-use of 
their products.  It is by no means the only skill with which usability practitioners must have 
proficiency, but it is an important one.  A recent survey of experienced usability practitioners 
indicated that usability testing is a very frequently used method, second only to the use of 
iterative design.  One goal of this chapter is to provide an introduction to the practice of usability 
testing.  This includes some discussion of the concept of usability and the history of usability 
testing, various goals of usability testing, and running usability tests.  A second goal is to cover 
more advanced topics, such as sample size estimation for usability tests, computation of 
confidence intervals, and the use of standardized usability questionnaires.   
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INTRODUCTION 
 

Usability testing is an essential skill for usability practitioners – professionals whose primary goal 
is to provide guidance to product developers for the purpose of improving the ease-of-use of their products.  
It is by no means the only skill with which usability practitioners must have proficiency, but it is an 
important one.  A recent survey of experienced usability practitioners (Vredenburg et al., 2002) indicated that 
usability testing is a very frequently used method, second only to the use of iterative design.   
 

One goal of this chapter is to provide an introduction to the practice of usability testing.  This 
includes some discussion of the concept of usability and the history of usability testing, various goals of 
usability testing, and running usability tests.  A second goal is to cover more advanced topics, such as 
sample size estimation for usability tests, computation of confidence intervals, and the use of standardized 
usability questionnaires.   
 

THE BASICS 
 
What is Usability? 

The term ‘usability’ came into general use in the early 1980s.  Related terms from that time were 
‘user friendliness’ and ‘ease-of-use,’ which ‘usability’ has since displaced in professional and technical 
writing on the topic (Bevan et al., 1991).  The earliest publication (of which I am aware) to include the word 
‘usability’ in its title was Bennett (1979).   
 

It is the nature of language that words come into use with fluid definitions.  Ten years after the first 
use of the term ‘usability,’ Brian Shackel (1990) wrote, “one of the most important issues is that there is, as 
yet, no generally agreed definition of usability and its measurement.” (p. 31)  As recently as 1998, Gray and 
Salzman stated, “Attempts to derive a clear and crisp definition of usability can be aptly compared to 
attempts to nail a blob of Jell-O to the wall.” (p. 242) 

 
There are several reasons why it has been so difficult to define usability.  Usability is not a 

property of a person or thing.  There is no thermometer-like instrument that can provide an absolute 
measurement of the usability of a product (Dumas, 2003).  Usability is an emergent property that depends on 
the interactions among users, products, tasks and environments.   
 

Introducing a theme that will reappear in several parts of this chapter, there are two major 
conceptions of usability.  These dual conceptions have contributed to the difficulty of achieving a single 
agreed upon definition.  One conception is that the primary focus of usability should be on measurements 
related to the accomplishment of global task goals (summative, or measurement-based, evaluation).  The 
other conception is that practitioners should focus on the detection and elimination of usability problems 
(formative, or diagnostic, evaluation).   
 

The first conception has led to a variety of similar definitions of usability, some embodied in 
current standards (which, to date, have emphasized summative evaluation).  For example: 
 

• “The current MUSiC definition of usability is: the ease of use and acceptability of a 
system or product for a particular class of users carrying out specific tasks in a specific 
environment; where ‘ease of use’ affects user performance and satisfaction, and 
‘acceptability’ affects whether or not the product is used.” (Bevan et al., 1991, p. 652) 

• Usability is the “extent to which a product can be used by specified users to achieve 
specified goals with effectiveness, efficiency and satisfaction in a specified context of 
use.” (ANSI, 2001, p. 3; ISO, 1998, p. 2) 

• “To be useful, usability has to be specific.  It must refer to particular tasks, particular 
environments and particular users.” (Alty, 1992, p. 105) 
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One of the earliest formative definitions of usability (ease-of-use) is from Chapanis (1981): 

 
“Although it is not easy to measure ‘ease of use,’ it is easy to measure difficulties that people have 
in using something.  Difficulties and errors can be identified, classified, counted, and measured.  So 
my premise is that ease of use is inversely proportional to the number and severity of difficulties 
people have in using software.   There are, of course, other measures that have been used to 
assess ease of use, but I think the weight of the evidence will support the conclusion that these 
other dependent measures are correlated with the number and severity of difficulties.” (p. 3) 

 
Practitioners in industrial settings generally use both conceptualizations of usability during 

iterative design.  Any iterative method must include a stopping rule to prevent infinite iterations.  In the real 
world, resource constraints and deadlines can dictate the stopping rule (although this rule is valid only if 
there is a reasonable expectation that undiscovered problems will not lead to drastic consequences).  In an 
ideal setting, the first conception of usability can act as a stopping rule for the second.  Setting aside, for 
now, the question of where quantitative goals come from, the goals associated with the first conception of 
usability can define when to stop the iterative process of the discovery and resolution of usability problems.  
This combination is not a new concept.  In one of the earliest published descriptions of iterative design, Al-
Awar et al. (1981) wrote: 

 
“Our methodology is strictly empirical.  You write a program, test it on the target population, find 

out what’s wrong with it, and revise it.  The cycle of test-rewrite is repeated over and over until a 
satisfactory level of performance is reached.  Revisions are based on the performance, that is, the difficulties 
typical users have in going through the program.”  (p. 31) 

 

What is Usability Testing? 

Imagine the two following scenarios. 
 
Scenario 1: Mr. Smith is sitting next to Mr. Jones, watching him work with a high-fidelity prototype 

of a web browser for Personal Digital Assistants (PDAs).  Mr. Jones is the third person that Mr. Smith has 
watched performing these tasks with this version of the prototype.  Mr. Smith is not constantly reminding 
Mr. Jones to talk while he works, but is counting on his proximity to Mr. Jones to encourage verbal 
expressions when Mr. Jones encounters any difficulty in accomplishing his current task.  Mr. Smith takes 
written notes whenever this happens, and also takes notes whenever he observes Mr. Jones faltering in his 
use of the application (for example, exploring menus in search of a desired function).  Later that day he will 
use his notes to develop problem reports and, in consultation with the development team, will work on 
recommendations for product changes that should eliminate or reduce the impact of the reported problems.  
When a new version of the prototype is  ready, he will resume testing. 

 
Scenario 2: Dr. White is watching Mr. Adams work with a new version of a word processing 

application.  Mr. Adams is working alone in a test cell that looks almost exactly like an office, except for the 
large mirror on one wall and the two video cameras overhead.  He has access to a telephone and a number to 
call if he encounters a difficulty that he cannot overcome.  If he places such a call, Dr. White will answer and 
provide help modeled on the types of help provided at the company’s call centers.  Dr. White can see Mr. 
Adams through the one-way glass as she coordinates the test.  She has one assistant working the video 
cameras for maximum effectiveness and another who is taking time-stamped notes on a computer 
(coordinated with the video time stamps) as different members of the team notice and describe different 
aspects of Mr. Adams’ task performance.  Software monitors Mr. Adams’ computer, recording all keystrokes 
and mouse movements.  Later that day, Dr. White and her associates will put together a summary of the task 
performance measurements for the tested version of the application, noting where the performance 
measurements do not meet the test criteria.  They will also create a prioritized list of problems and 
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recommendations, along with video clips that illustrate key problems, for presentation to the development 
team at their weekly status meeting.   

 
Both of these scenarios provide examples of usability testing.  In Scenario 1, the emphasis is 

completely on usability problem discovery and resolution (formative, or diagnostic evaluation).  In Scenario 
2, the primary emphasis is on task performance measurement (summative, or measurement-focused 
evaluation), but there is also an effort to record and present usability problems to the product developers.  
Dr. White’s team knows that they cannot determine if they’ve met the usability performance goals by 
examining a list of problems, but they also know that they cannot provide appropriate guidance to product 
development if they only present a list of global task measurements.  The problems observed in the use of 
an application provide important clues for redesigning the product (Chapanis, 1981; Norman, 1983).  
Furthermore, as John Karat (1997, p. 693) observed, “The identification of usability problems in a prototype 
user interface (UI) is not the end goal of any evaluation.  The end goal is a redesigned system that meets the 
usability objectives set for the system such that users are able to achieve their goals and are satisfied with 
the product.” 

 
These scenarios also illustrate the defining properties of a usability test.  During a usability test, 

one or more observers watch one or more participants perform specified tasks with the product in a specified 
test environment (comp are this with the ISO/ANSI definition of usability presented earlier in this chapter).  
This is what makes usability testing different from other User-Centered Design (UCD) methods.  In 
interviews (including the group interview known as a focus group), participants do not perform work-like 
tasks.  Usability inspection methods (such as expert evaluations and heuristic evaluations), also do not 
include the observation of users or potential users performing work-like tasks.  The same is true of 
techniques such as surveys and card-sorting.  Field studies (including contextual inquiry) can involve the 
observation of users performing work-related tasks in target environments, but restrict the control that 
practitioners have over the target tasks and environments.  Note that this is not necessarily a bad thing, but 
it is a defining difference between usability testing and field (ethnographic) studies.   

 
This definition of usability testing permits a wide range of variation in technique (Wildman, 1995).  

Usability tests can be very informal (as in Scenario 1) or very formal (as in Scenario 2).  The observer might 
sit next to the participant, watch through a one-way glass, or watch the on-screen behavior of a participant 
who is performing specified tasks at a location halfway around the world.  Usability tests can be think-aloud 
(TA) tests, in which observers train participants to talk about what they’re doing at each step of task 
completion and prompt participants to continue talking if they stop.  Observers might watch one participant 
at a time, or might watch participants work in pairs.  Practitioners can apply usability testing to the 
evaluation of low-fidelity prototypes (see Figure 1), Wizard of Oz (WOZ) prototypes (Kelley, 1985), high-
fidelity prototypes, products under development, predecessor products, or competitive products.   
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Figure 1. Practitioner and participant engaging in an informal usability test with a pencil-and-paper 
prototype. (Photo courtesy of IBM.) 
 

Where Did Usability Testing Come From?   
The roots of usability testing lie firmly in the experimental methods of psychology (in particular, 

cognitive and applied psychology) and human factors engineering, and are strongly tied to the concept of 
iterative design.  In a traditional experiment, the experimenter draws up a careful plan of study that includes 
the exact number of participants that the experimenter will expose to the different experimental treatments.  
The participants are members of the population to which the experimenter wants to generalize the results.  
The experimenter provides instructions and debriefs the participant, but at no time during a traditional 
experimental session does the experimenter interact with the participant (unless this interaction is part of the 
experimental treatment).  The more formative (diagnostic, focused on problem discovery) the focus of a 
usability test, the less it is like a traditional experiment (although the requirements for sampling from a 
legitimate population of users, tasks, and environments still apply).  Conversely, the more summative 
(focused on measurement) a usability test is, the more it should resemble the mechanics of a traditional 
experiment.  Many of the principles of psychological experimentation that exist to protect experimenters from 
threats to reliability and validity (for example, the control of demand characteristics) carry over into usability 
testing (Holleran, 1991; Wenger and Spyridakis, 1989). 

 
As far as I can tell, the earliest accounts of iterative usability testing applied to product design 

came from Alphonse Chapanis and his students (Al-Awar et al., 1981; Chapanis, 1981; Kelley, 1984), with 
almost immediate influence on product development practices at IBM (Kennedy, 1982; Lewis, 1982) and 
other companies, notably Xerox (Smith et al., 1982) and Apple (Williams, 1983).  Shortly thereafter, John 
Gould and his associates at the IBM T. J. Watson Research Center began publishing influential papers on 
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usability testing and iterative design (Gould, 1988; Gould and Boies, 1983; Gould and Lewis, 1984; Gould et 
al., 1987).   

 
 The driving force that separated iterative usability testing from the standard protocols of 
experimental psychology was the need to modify early product designs as rapidly as possible (as opposed 
to the scientific goal of developing and testing competing theoretical hypotheses).  As Al-Awar et al. (1981) 
reported, “Although this procedure [iterative usability test, redesign, and retest] may seem unsystematic 
and unstructured, our experience has been that there is a surprising amount of consistency in what subjects 
report.  Difficulties are not random or whimsical.  They do form patterns.” (p. 33)   
 
 When, during the early stages of iterative design, difficulties of use become apparent, it is hard to 
justify continuing to ask test participants to perform the test tasks.  There are ethical concerns with 
intentionally frustrating participants who are using a product with known flaws that the design team can and 
will correct.  There are economic concerns with the time wasted by watching participants who are 
encountering and recovering from known error-producing situations.  Furthermore, any delay in updating 
the product delays the potential discovery of problems associated with the update or problems whose 
discovery was blocked by the presence of the known flaws.  For these reasons, the earlier you are in the 
design cycle, the more rapidly you should iterate the cycles of test and design.   
 
Is Usability Testing Effective?   

The widespread use of usability testing is evidence that practitioners believe that usability testing 
is effective.  Unfortunately, there are fields in which practitioners’ belief in the effectiveness of their 
methods does not appear to be warranted by those outside of the field (for example, the use of projective 
techniques such as the Rorschach test in psychotherapy, Lilienfeld et al., 2000).  In our own field, a number 
of recently published papers have questioned the reliability of usability problem discovery (Kessner et al., 
2001; Molich et al., 1998, 2004).   

 
 The common finding in these studies has been that observers (either individually or in teams 
across usability laboratories) who evaluated the same product produced markedly different sets of 
discovered problems.  Molich et al. (1998) had four independent usability laboratories carry out inexpensive 
usability tests of a software application for new users.  The four teams reported 141 different problems, with 
only one problem common among all four teams.  Molich et al. (1998) attributed this inconsistency to 
variability in the approaches taken by the teams (task scenarios, level of problem reporting).  Kessner et al. 
(2001) had six professional usability teams independently test an early prototype of a dialog box.  None of 
the problems were detected by every team, and 18 problems were described by one team only.  Molich et al. 
(2004) assessed the consistency of usability testing across nine independent organizations that evaluated 
the same website.  They documented considerable variability in methodologies, resources applied, and 
problems reported.  The total number of reported problems was 310, with only two problems reported by six 
or more organizations, and 232 problems uniquely reported.  “Our main conclusion is that our simple 
assumption that we are all doing the same and getting the same results in a usability test is plainly wrong” 
(Molich et al., 2004, p. 65).   
 

This is important and disturbing research, but there is a clear need for much more research in this 
area.  A particularly important goal of future research should be to reconcile these studies with the 
documented reality of usability improvement achieved through iterative application of usability testing.  For 
example, a limitation of research that stops with the comparison of problem lists is that it is not possible to 
assess the magnitude of the usability improvement (if any) that would result from product redesigns based 
on design recommendations derived from the problem lists (Wixon, 2003).  When comparing problem lists 
from many labs, one aberrant set of results can have an extreme effect on measurements of consistency 
across labs, and the more labs that are involved, the more likely this is to happen.  

 
The results of these studies (Kessner et al., 2001; Molich et al., 1998, 2004) stand in stark contrast 

to the published studies in which iterative usability tests (sometimes in combination with other UCD 
methods) have led to significantly improved products (Al-Awar et al., 1981; Bailey, 1993; Bailey et al., 1992; 
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Gould et al., 1987; Kelley, 1984; Kennedy, 1982; Lewis, 1982; Lewis, 1996b; Ruthford and Ramey, 2000).  For 
example, in a paper describing their experiences in product development, Marshall et al. (1990) stated, 
“Human factors work can be reliable – different human factors engineers, using different human factors 
techniques at different stages of a product’s development, identified many of the same potential usability 
defects” (p. 243).  Published cost-benefit analyses (Bias and Mayhew, 1994) have demo nstrated the value of 
usability engineering processes that include usability testing, with cost-benefit ratios ranging from 1:2 for 
smaller projects to 1:100 for larger projects (C. Karat, 1997).   

 
Most of the papers that describe the success of iterative usability testing are case studies (such as 

Marshall et al., 1990), but a few have described designed experiments.  Bailey et al. (1992) compared two user 
interfaces derived from the same base interface – one modified via heuristic evaluation and the other 
modified via iterative usability testing (three iterations, five participants per iteration).  They conducted this 
experiment with two interfaces, one character-based and the other a graphical user interface (GUI), with the 
same basic outcomes.  The numb er of changes indicated by usability testing was much smaller than the 
number indicated by heuristic evaluation, but user performance was the same with both final versions of the 
interface.  All designs after the first iteration produced faster performance than and, for the character-based 
interface, were preferred to, the original design.  The time to complete the performance testing was about the 
same as that required for the completion of multi-reviewer heuristic evaluations.   

 
Bailey (1993) provided additional experimental evidence that iterative design based on usability 

tests leads to measurable improvements in the usability of an application.  In the experiment, he studied the 
designs of eight designers, four with at least four years of professional experience in interface design and 
four with at least five years of professional experience in computer programming.  All designers used a 
prototyping tool to create a recipes application (eight applications in all).  In the first wave of testing, Bailey 
videotaped participants performing tasks with the prototypes, three different participants per prototype.  
Each designer reviewed the videotapes of the people using his or her prototype, and used the observations 
to redesign his or her application.  This process continued until each designer indicated that it was not 
possible to improve his or her application.  All designers stopped after three to five iterations.  Comparison 
of the first and last iterations indicated significant improvement in measurements such as number of tasks 
completed, task completion times, and repeated serious errors. 

 
 In conclusion, the results of the studies of Molich et al. (1998, 2004) and similar studies show that 
usability practitioners must conduct their usability tests as carefully as possible, document their methods 
completely, and show proper caution when interpreting their results.  On the other hand, as Landauer stated 
in 1997, “There is ample evidence that expanded task analysis and formative evaluation can, and almost 
always do, bring substantial improvements in the effectiveness and desirability of systems” (p. 204).  This is 
echoed by Desurvire et al. (1992, p. 98), “It is generally agreed that usability testing in both field and 
laboratory, is far and above the best method for acquiring data on usability.” 
 

Goals of Usability Testing 

 
The fundamental goal of usability testing is to help developers produce more usable products.  The 

two conceptions of usability testing (formative and summative) lead to differences in the specification of 
goals in much the same way that they contribute to differences in fundamental definitions of usability 
(diagnostic problem discovery and measurement).  Rubin (1994, p. 26) expressed the formative goal as, “The 
overall goal of usability testing is to identify and rectify usability deficiencies existing in computer-based 
and electronic equipment and their accompanying support materials prior to release.”  Dumas and Redish 
(1999, p. 11) provided a more summative goal with, “A key component of usability engineering is setting 
specific, quantitative, usability goals for the product early in the process and then designing to meet those 
goals.”   
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These goals are not in direct conflict, but they do suggest different foci that can lead to differences 
in practice.  For example, a focus on measurement typically leads to more formal testing (less interaction 
between observers and participants) whereas a focus on problem discovery typically leads to less formal 
testing (more interaction between observers and participants).  In addition to the distinction between 
diagnostic problem discovery and measurement tests, there are two common types of measurement tests: (1) 
comparison against objectives and (2) comparison of products. 
 
Problem Discovery Test   

The primary activity in diagnostic problem discovery tests is the discovery, prioritization, and 
resolution of usability problems.  The number of participants in each iteration of testing should be fairly 
small, but the overall test plan should be for multiple iterations, each with some variation in participants and 
tasks.  When the focus is on problem discovery and resolution, the assumption is that more global measures 
of user performance and satisfaction will take care of themselves (Chapanis, 1981).  The measurements 
associated with problem-discovery tests are focused on prioritizing problems, and include frequency of 
occurrence in the test, likelihood of occurrence during normal usage (taking into account the anticipated 
usage of the part of the product in which the problem occurred), and magnitude of impact on the 
participants who experienced the problem.  Because the focus is not on precise measurement of the 
performance or attitudes of participants, problem discovery studies tend to be informal, with a considerable 
amount of interaction between observers and participants.  Some typical stopping rules for iterations are a 
preplanned number of iterations or a specific problem discovery goal, such as “Identify 90% of the problems 
available for discovery for these types of participants, this set of tasks, and these conditions of use.”  See 
the section below on sample size estimation and adequacy for more detailed information on setting and 
using these types of problem-discovery objectives. 

 
Measurement Test Type I: Comparison against Quantitative Objectives   

Studies that have a primary focus of comparison against quantitative objectives include two 
fundamental activities.  The first is the development of the usability objectives.  The second is iterative 
testing to determine if the product under test has met the objectives.  A third activity (which can take place 
during iterative testing) is the enumeration and description of usability problems, but this activity is 
secondary to the collection of precise measurements.   

 
 The first step in developing quantitative usability objectives is to determine the appropriate 
variables to measure.  Rengger (1991), as part of the work done for the European MUSiC project (Measuring 
the Usability of Systems in Context) produced a list of potential usability measurements based on 87 papers 
out of a survey of 500 papers.  He excluded purely diagnostic studies and also excluded papers if they did 
not provide measurements for the combined performance of a user and a system.  He categorized the 
measurements into four classes: 
 

• Class 1: Goal achievement indicators (such as success rate and accuracy) 
• Class 2: Work rate indicators (such as speed and efficiency) 
• Class 3: Operability indicators (such as error rate and function usage) 
• Class 4: Knowledge acquisition indicators (such as learnability and learning rate) 

 
In a later discussion of the MUSiC measures, Macleod et al. (1997) described measures of 

effectiveness (the level of correctness and completeness of goal achievement in context) and efficiency 
(effectiveness related to cost of performance – typically the effectiveness measure divided by task 
completion time).  Optional measures were of productive time and unproductive time, with unproductive time 
consisting of help actions, search actions, and snag (negation, cancelled, or rejected) actions.   

 
Their (Macleod et al., 1997) description of the measures of effectiveness and efficiency seem to 

have influenced the objectives expressed in ISO 9241-11 (1998, p. iv): “The objective of designing and 
evaluating visual display terminals for usability is to enable users to achieve goals and meet needs in a 
particular context of use.  ISO 9241-11 explains the benefits of measuring usability in terms of user 
performance and satisfaction.  These are measured by the extent to which the intended goals of use are 
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achieved, the resources that have to be expended to achieve the intended goals, and the extent to which the 
user finds the use of the product acceptable.” 

 
In practice (and as recommended in the ANSI Common Industry Format for Usability Test Reports, 

2001), the fundamental global measurements for usability tasks are successful task completion rates (for a 
measure of effectiveness), mean task completion times (for a measure of efficiency), and mean participant 
satisfaction ratings (either collected on a task-by-task basis or at the end of a test session – see the section 
below on standardized usability questionnaires for more information on measuring participant satisfaction).  
There are many other measurements that practitioners could consider (Dumas and Redish, 1999; Nielsen, 
1997), including but not limited to: 

 
1. The number of tasks completed within a specified time limit 
2. The number of wrong menu choices 
3. The number of user errors 
4. The number of repeated errors (same user committing the same error more than once) 

 
After determining the appropriate measurements, the next step is to set the goals.    Ideally, the 

goals should have an objective basis and shared acceptance across the various stakeholders, such as 
Marketing, Development, and Test groups (Lewis, 1982).  The best objective basis for measurement goals 
are data from previous usability studies of predecessor or competitive products.  For maximum 
generalizability, the historical data should come from studies of similar types of participants completing the 
same tasks under the same conditions (Chapanis, 1988).  If this information is not available, then an 
alternative is for the test designer to recommend objective goals and to negotiate with the other 
stakeholders to arrive at a set of shared goals.   

 
“Defining usability objectives (and standards) isn’t easy, especially when you’re beginning a 

usability program.  However, you’re not restricted to the first objective you set.  The important thing is to 
establish some specific objectives immediately, so that you can measure improvement.  If the objectives turn 
out to be unrealistic or inappropriate, you can revise them.” (Rosenbaum, 1989, p. 211)  Such revisions, 
however, should take place only in the early stages of gaining experience and taking initial measurements 
with a product.  It is important not to change reasonable goals to accommodate an unusable product. 

 
When setting usability goals, it’s usually better to set goals that make reference to an average 

(mean) of a measurement than to a percentile.  For example, set an objective such as “The mean time to 
complete Task 1 will be less than five minutes” rather than “95% of participants will complete Task 1 in less 
than ten minutes”.  The statistical reason for this is that sample means drawn from a continuous distribution 
are less variable than sample medians (the 50th percentile of a sample), and measurements made away from 
the center of a distribution (for example, measurements made to attempt to characterize the value of the 95th 
percentile) are even more variable (Blalock, 1972).  Cordes (1993) conducted a Monte Carlo study comparing 
means and medians as measurements of central tendency for time-on-task scores, and determined that the 
mean should be the preferred metric for usability studies (unless there is missing data due to participants 
failing to complete tasks, in which case the mean from the study will underestimate the population mean). 

 
A practical reason to avoid percentile goals is that the goal can imply a sample size requirement 

that is unnecessarily large.  For example, you can’t measure accurately at the 95th percentile unless there are 
at least twenty measurements (in fact, there must be many more than twenty measurements for accurate 
measurement).  For more details, see the section below on sample size estimation for measurement. 

 
An exception to this is the specification of successful task completions (or any other measurement 

that is based on counting events), which necessarily requires a percentile goal, usually set at or near 100% 
(unless there are historical data that indicate an acceptable lower level for a specific test).  If ten out of ten 
participants complete a task successfully, the observed completion rate is 100%, but a 90% binomial 
confidence interval for this result ranges from 74% to 100%.  In other words, even perfect performance for 
ten participants with this type of measure leaves open the possibility (with 90% confidence) that the true 
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completion rate could be as low as 75%.  See the section below on binomial confidence intervals for more 
information on computing and using this information in usability tests. 

 
After the usability goals have been established, the next step is to collect data to determine if the 

product has met its goals.  Representative participants perform the target tasks in the specified environment 
as test observers record the target measurements and identify, to the extent possible within the constraints 
of a more formal testing protocol, details about any usability problems that occur.  The usability team 
conducting the test provides information about goal achievement and prioritized problems to the 
development team, and a decision is made regarding whether or not there is sufficient evidence that the 
product has met its objectives.  The ideal stopping rule for measurement-based iterations is to continue 
testing until the product has met its goals. 

 
When there are only a few goals, then it is reasonable to expect to achieve all of them.  When there 

are many goals (for example, five objectives per task multiplied by ten tasks for a total of fifty objectives), 
then it is more difficult to determine when to declare success and to stop testing.  Thus, it is sometimes 
necessary to specify a meta-objective of the percentage of goals to achieve.   

 
Despite the reluctance of some usability practitioners to conduct statistical tests to quantitatively 

assess the strength of the available evidence regarding whether or not a product has achieved a particular 
goal, the best practice is to conduct such tests.  The best approach is to conduct multiple t-tests or 
nonparametric analogs of t-tests (Lewis, 1993) because this gives practitioners the level of detail that they 
require.  There is a well-known prohibition against doing this because it can lead investigators to mistakenly 
accept as real that some differences that are due to chance (technically, alpha inflation).  On the other hand, 
if this is the required level of information, then it is an appropriate method (Abelson, 1995).  Furthermore, the 
practice of avoiding alpha inflation is a concern more related to scientific hypothesis testing than to 
usability testing (Wickens, 1998), although usability practitioners should be aware of its existence and take 
it into account when interpreting their statistical results.  For example, if you compare two products by 
conducting fifty t-tests with alpha set to .10, and only five (10%) of the t-tests are significant (have p less 
than .10), then you should question whether or not to use those results as evidence of the superiority of 
one product over the other.  On the other hand, if substantially more than five of the t-tests are significant, 
then you can be more confident that the indicated differences are real. 

 
In addition to (or as an alternative to) conducting multiple t-tests, practitioners should compute 

confidence intervals for their measurements.  This applies to the measurements made for the purpose of 
establishing test criteria (such as measurements made on predecessor versions of the target product or 
competitive products) and to the measurements made when testing the product under development.  See the 
section below on confidence intervals for more details.   

 
Measurement Test Type II: Comparison of Products   

The second type of measurement test is to conduct usability tests for the purpose of directly 
comparing one product with another.  As long as there is only one measurement that decision makers plan 
to consider, then a standard t-test (ideally, in combination with the computation of confidence intervals) will 
suffice for the purpose of determining which product is superior.   

 
If decision makers care about multiple dependent measures, then standard multivariate statistical 

procedures (such as MANOVA or discriminant analysis) are not often helpful in guiding a decision about 
which of two products has superior usability.  The statistical reason for this is that multivariate statistical 
procedures depend on the computation of centroids (a weighted average of multiple dependent measures) 
using a least-squares linear model that maximizes the difference between the centroids of the two products 
(Cliff, 1987).  If the directions of the measurements are inconsistent (for example, a high task completion rate 
is  desirable, but a high mean task completion time is not), then the resulting centroids are uninterpretable for 
the purpose of usability comparison.  In some cases it is possible to recompute variables so they have 
consistent directions (for example, recomp uting task completion rates as task failure rates).  If this is not 
possible, then another approach is to convert measurements to ranks (Lewis, 1991a) or standardized (Z) 
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scores (Jeff Sauro, personal communication, March 1, 2004) for the purpose of principled combination of 
different types of measurements. 

 
To help consumers compare the usability of different products, the American National Standards 

Institute (ANSI) has published the Common Industry Format (CIF) for usability test reports (ANSI, 2001).  
Originally developed at the National Institute of Standards and Technology (NIST), this test format requires 
measurement of effectiveness (accuracy and completeness – completion rates, errors, assists), efficiency 
(resources expended in relation to accuracy and completeness – task completion time), and satisfaction 
(freedom from discomfort, positive attitude toward use of the product – using any of a number of 
standardized satisfaction questionnaires).  It also requires a complete description of participants and tasks.   

 
 Morse (2000) reviewed the NIST IUSR project conducted to pilot test the CIF.  The purpose of the 
CIF is to make it easier for purchasers to compare the usability of different products.  The pilot study ran 
into problems, such as inability to find a suitable software product for both supplier and consumer, 
reluctance to share information, and uncertainty about how to design a good usability study.  To date, there 
has been little if any use (at least, no published use) of the CIF for its intended purpose.   
 
Variations on a Theme: Other Types of Usability Tests 

Think Aloud   
In a standard, formal usability test, test participants perform tasks without necessarily speaking as 

they work.  The defining characteristic of a Think Aloud (TA) study is the instruction to participants to talk 
about what they are doing as they do it (in other words, to produce verbal reports).  If participants stop 
talking (as commonly happens when they become very engaged in a task), they are prompted to resume 
talking. 

 
 The most common theoretical justification for the use of TA is from the work in cognitive 
psychology (specifically, human problem solving) of Ericsson and Simon (1980).  Responding to a review by 
Nisbett and Wilson (1977) that described various ways in which verbal reports were unreliable, Ericsson and 
Simon provided evidence that certain kinds of verbal reports could produce reliable data.  They stated that 
reliable verbalizations are those that participants produce during task performance that do not require 
additional cognitive processing beyond the processing required for task performance and verbalization.     
 

Some discussions of usability testing hold that the best practice in usability testing is to use the 
TA method in all usability testing.  For example, Dumas (2003) encouraged the use of TA because (1) TA 
tests are more productive for finding usability problems (Virzi, Sorce, and Herbert, 1993) and (2) thinking 
aloud does not affect user ratings or performance (Bowers and Snyder, 1990).  As the references indicate, 
there is some evidence in support of these statements, but the evidence is mixed.   

 
Earlier prohibitions against the use of TA in measurement-based tests assumed that thinking aloud 

would cause slower task performance.  Bowers and Snyder (1990), however, found no measurable task 
performance or preference differences between a test group that thought aloud and one that didn’t.  
Surprisingly, there are some experiments in which the investigators reported better task performance when 
participants were thinking aloud.  Berry and Broadbent (1990) provided evidence that the process of 
thinking aloud invoked cognitive processes that improved rather than degraded performance, but only if 
people were given (1) verbal instructions on how to perform the task and (2) the requirement to justify each 
action aloud.  Wright and Converse (1992) compared silent with TA usability testing protocols.  The results 
indicated that the think-aloud group committed fewer errors and completed tasks faster than the silent 
group, and the difference between the groups increased as a function of task difficulty.   

 
Regarding the theoretical justification for and typical practice of TA, Boren and Ramey (2000) 

noted that TA practice in usability testing often does not conform to the theoretical basis most often cited 
for it (Ericsson and Simon, 1980).  “If practitioners do not uniformly apply the same techniques in conducing 
thinking-aloud protocols, it becomes difficult to compare results between studies.” (Boren and Ramey, 2000, 
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p. 261)  In a review of publications of TA tests and field observations of practitioners running TA tests, 
they reported inconsistency in explanations to participants about how to think aloud, practice periods, 
styles of reminding participants to think aloud, prompting intervals, and styles of intervention.  They 
suggest that rather than basing current practice on Ericsson and Simon, a better basis would be speech 
communication theory, with clearly defined communicative roles for the participant (in the role of domain 
expert or valued customer, making the participant the primary speaker) and the usability practitioner (the 
learner or listener, thus, a secondary speaker).   

 
Based on this alternative perspective for the justification of TA, Boren and Ramey (2000) have 

provided guidance for many situations that are not relevant in a cognitive psychology experiment, but are in 
usability tests.  For example, they recommend that usability practitioners running a TA test should 
continually use acknowledgement tokens that do not take speakership away from the participant, such as 
“mm hm?” and “uh-huh?” (with the interrogative intonation) to encourage the participant to keep talking.  In 
normal communication, silence (as recommended by the Ericsson and Simon protocols) is not a 
nonresponse – the speaker interprets it in a primarily negative way as indicating aloofness or 
condescension.   They avoided providing precise statements about how frequently to provide 
acknowledgments or somewhat more explicit reminders (such as “And now…?”) because the best cues 
come from the participants.  Practitioners need to be sensitive to these cues as they run the test. 

 
 The evidence indicates that, relative to silent participation, TA can affect task performance.  If the 
primary purpose of the test is problem discovery, then TA appears to have advantages over completely 
silent task completion.  If the primary purpose of the test is task performance measurement, then the use of 
TA is somewhat more complicated.  As long as all the tasks in the planned comparisons were completed 
under the same conditions, then performance comparisons should be legitimate.  The use of TA almost 
certainly prevents generalization of task performance outside of the TA task, but there are many other 
factors that make it difficult to generalize specific task performance data collected in usability studies.   
 
 For example, Cordes (2001) demonstrated that participants assume that the tasks they are asked to 
perform in usability tests are possible (the “I know it can be done or you wouldn’t have asked me to do it” 
bias).  Manipulations that bring this assumption into doubt can have a strong effect on quantitative 
usability performance measures, such as increasing the percentage of participants who give up on a task.  If 
uncontrolled, this bias makes performance measures from usability studies unlikely to be representative of 
real-world performance when users are uncertain as to whether the product they are using can support the 
desired tasks.   
 
Multiple Simultaneous Participants   

Another way to encourage participants to talk during task completion is to have them work 
together (Wildman, 1995).  This strategy is similar to TA in its strengths and limitations.   

 
 Hackman and Biers (1992) compared three think-aloud methods: thinking aloud alone (Single), 
thinking aloud in the presence of an observer (Observer), and verbalizations occurring in a two-person team 
(Team).  They found no significant differences in performance or subjective measures.  The Team condition 
produced more statements of value to designers than the other two conditions, but this was probably due to 
the differing number of participants producing statements in the different conditions.  There were three 
groups, with 10 participants per group for Single and Observer, and 20 participants (10 two-person teams) 
for the Team condition.  “The major result was that the team gave significantly more verbalizations of high 
value to designers and spent more time making high value comments.  Although this can be reduced to the 
fact that the team spoke more overall and that there are two people talking rather than one, this finding is not 
trivial.”  (p. 1208) 
 
Remote Evaluation   

Recent advances in the technology of collaborative software have made it easier to conduct remote 
software tests (tests in which the usability practitioner and the test participant are in different locations).  
This can be an economical alternative to bringing one or more users into a lab for face-to-face user testing.  
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A participant in a remote location can view the contents of the practitioner’s screen, and in a typical system 
the practitioner can decide whether the participant can control the desktop.  System performance is typically 
slower than that of a local test session.  

 
 Some of the advantages of remote testing are (1) access to participants who would otherwise be 
unable to participate (international, special needs, etc.), (2) the capability for participants to work in familiar 
surroundings, and (3) no need for either party to install or download additional software.  Some of the 
disadvantages are (1) potential uncontrolled disruptions in the participant’s workplace, (2) lack of visual 
feedback from the participant, and (3) the possibility of compromised security if the participant takes screen 
captures of confidential material.  Despite these disadvantages, McFadden et al. (2002) reported data that 
indicated that remote testing was effective at improving product designs and that the test results were 
comparable to the results obtained with more traditional testing.   
 
Usability Laboratories 

A typical usability laboratory test suite is a set of soundproofed rooms with a participant area and 
observer area separated by a one-way glass, and with video cameras and microphones to capture the user 
experience (Marshall et al., 1990; Nielsen, 1997), possibly with an executive viewing area behind the primary 
observers’ area.  The advantages of this type of usability facility are quick setup, a place where designers 
can see people interacting with their products, videos to provide a historical record and backup for 
observers, and a professional appearance that raises awareness of usability and reassures customers about 
commitment to usability.  In a survey of usability laboratories, Nielsen (1994) reported a median floor space 
of 63 m2 (678 ft2) for the observer room and 13 m2 (144 ft2) for test rooms.  This type of laboratory (see Figure 
2) is especially important if practitioners plan to conduct formal, summative usability tests.   
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Figure 2. View of a usability laboratory. (Photo courtesy of IBM.) 
 
 If the practitioner focus is on formative, diagnostic problem discovery, then this type of laboratory 
is not essential (although still convenient).  “It is possible to convert a regular office temporarily into a 
usability laboratory, and it is possible to perform usability testing with no more equipment than a notepad.” 
(Nielsen, 1997, p. 1561)  Making an even stronger statement against the perceived requirement for formal 
laboratories, Landauer (1997, p. 204) stated, “Many usability practitioners have demanded greater resources 
and more elaborate procedures than are strictly needed for effective guidance – such as expensive usability 
labs rather than natural settings for test and observations, time consuming videotaping and analysis where 
observation and note-taking would serve as well, and large groups of participants to achieve statistical 
significance when qualitative naturalistic observation of task goals and situations, or of disastrous interface 
or functionality flaws, would be more to the point.” 
 
Test Roles 

There are several ways to categorize the roles that testers need to play in the preparation and 
execution of a usability test (Dumas and Redish, 1999; Rubin, 1994).  Most test teams will not have an 
individual assigned to each role, and most tests (especially informal problem discovery tests) do not require 
every role.  The actual distribution of skills across a team might vary from these roles, but the standard roles 
help to organize the skills needed for effective usability testing. 
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Test Administrator   
The test administrator is the usability test team leader.  He or she designs the usability study, 

including the specification of the initial conditions for a test session and the codes to use for data logging.  
The test administrator’s duties include conducting reviews with the rest of the test team, leading in the 
analysis of data, and putting together the final presentation or report.  People in this role should have a solid 
understanding of the basics of usability engineering, ability to tolerate ambiguity, flexibility (knowing when 
to deviate from the plan), and good communication skills. 

 
Briefer  

The briefer is the person who interacts with the participants (briefing them at the start of the test, 
communicating with them as required during the test, and debriefing them at the end of the test sessions).  
On many teams, the same person takes the roles of administrator and briefer.  In a think-aloud study, the 
briefer has the responsibility to keep the participant talking.  The briefer needs to have sufficient familiarity 
with the product to be able to decide what to tell participants when they ask questions.  People in this role 
need to be comfortable interacting with people, and need to be able to restrict their interactions to those that 
are consistent with the purposes of the test without any negative treatment of the participants.   

 
Camera Operator  
The camera operator is responsible for running the audio-visual equipment during the test.  He or she must 
be skilled in the setup and operation of the equipment, and must be able to take directions quickly when it is 
necessary to change the focus of the camera (for example, from the keyboard to the user manual).   
 
Data Recorder  

The video record is useful as a data backup when things start happening quickly during the test, 
and as a source for video examples when documenting usability problems.  The primary data source for a 
usability study, however, is the notes that the data recorder takes during a test session.  There just isn’t 
time to take notes from a more leisurely examination of the video record.  Also, the camera doesn’t 
necessarily catch the important action at every moment of a usability study.   

 
For informal studies, the equipment used to record data might be nothing more than a notepad and 

pencil.  Alternatively, the data recorder might use data-logging software to take coded notes (often time-
stamped, possibly synchronized with the video).  Before the test begins, the data recorder needs to prepare 
the data-logging software with the category codes defined by the test administrator.  Taking notes with 
data-logging software is a very demanding skill, so the test administrator does not usually assign additional 
tasks to the person taking this role.   

 
Help Desk Operator  

The help desk operator takes calls from the participant if the user experiences enough difficulty to 
place the call.  The operator should have some familiarity with the call-center procedures followed by the 
company that has designed the product under test, and must also have skills similar to those of the briefer. 

 
Product Expert  

The product expert maintains the product and offers technical guidance during the test.  The 
product expert must have sufficient knowledge of the product to recover quickly from product failures and 
to help the other team members understand the system’s actions during the test. 

 
Statistician  

A statistician has expertise in measurement and the statistical analysis of data.  Practitioners with 
an educational background in experimental psychology typically have sufficient expertise to take the role of 
statistician for a usability test team.  Informal tests rarely require the services of a statistician, but the team 
needs a statistician to extract the maximum amount of information from the data gathered during a formal test 
(especially if the purpose of the formal test was to compare two products using a battery of measurements). 
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Planning the Test 

One of the first activities a test administrator must undertake is to develop a test plan.  To do this, 
the administrator must understand the purpose of the product, the parts of the product that are ready for 
test, the types of people who will use the product, what they are likely to use the product for, and in what 
settings.   
 
Purpose of Test   

At the highest level, is the primary purpose of the test to identify usability problems or to gather 
usability measurements?  The answer to this question provides guidance as to whether the most appropriate 
test is formal or informal, think-aloud or silent, problem discovery or quantitative measurement.  After 
addressing this question, the next task is to define any more specific test objectives.  For example, an 
objective for an interactive voice response system (IVR) might be to assess whether participants can 
accomplish key tasks without encountering significant problems.  If data are available from a previous study 
of a similar IVR, an alternative objective might be to determine whether participants can complete key tasks 
reliably faster with the new IVR than they did with the previous IVR.  Most usability tests will include 
several objectives. 

 
 If a key objective of the test is to compare two products, then an important decision is whether the 
test will be within-subjects or between-subjects.  In a within-subjects test, every participant works with both 
products, with half of the participants using one product first and the other half using the other product first 
(a technique known as counterbalancing).  In a between-subjects study, the test groups are completely 
independent.  In general, a within-subjects test leads to more precise measurement of product differences 
(requiring a smaller number of participants for equal precision, primarily due to the reduction in variability 
that occurs when each participant acts as his or her own control) and the opportunity to get direct 
subjective product comparisons from participants.  For a within-subjects test to be feasible, both products 
must be available and set up for use in the lab at the same time, and the amount of time needed to complete 
tasks with both products must not be excessive.   If a within-subjects test is not possible, a between-
subjects test is a perfectly valid alternative.  Note that the statistical analyses appropriate for these two 
types of tests are different.   
 
Participants   

To determine who will participate in the test, the administrator needs to obtain or develop a user 
profile.  A user profile is sometimes available from the marketing group, the product’s functional 
specification, or other product planning documentation.  It is important to keep in mind that the focus of a 
usability test is the end user of a product, not the expected product purchaser (unless the product will be 
purchased by end users).  The most important participant characteristic is that the participant is 
representative of the population of end-users to whom the administrator wants to generalize the results of 
the test.  Practitioners can obtain participants from employment agencies, internal sources if the participants 
meet the requirements of the user profile (but avoiding internal test groups), market research firms, existing 
customers, colleges, newspaper ads, and user groups. 

 
To define representativeness, it is important to specify the characteristics that members of the 

target population share but are not characteristic of nonmembers.  The administrator must do this for the 
target population at large and any defined subgroups.  Within group definition constraints, administrators 
should seek heterogeneity in the final sample to maximize the generalizability of the results (Chapanis, 1988; 
Landauer, 1997) and to maximize the likelihood of problem discovery.  It is true that performance 
measurements made with a homogeneous sample will almost always have greater precision than 
measurements made with a heterogeneous sample, but the cost of that increased precision is limited 
generalizability.  This raises the issue of how to define homogeneity and heterogeneity of participants.  
After all, at the highest level of categorization, we are all humans, with similar general capabilities and 
limitations (physical and cognitive).  At the other end of the spectrum, we are all individuals – no two alike.   
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One of the most important defining characteristics for a group in a usability test is specific relevant 
experience, both with the product and in the domain of interest (work experience, general product 
experience, specific product experience, experience with the product under test, and experience with similar 
products).  One common categorization scheme is to consider people with less than three months experience 
as novices, with more than a year of experience as expert, and those in between as intermediate (Dumas and 
Redish, 1999).  Other individual differences that practitioners routinely track and attempt to vary are 
education level, age, and sex.   

 
When acquiring participants, how can practitioners define the similarity between the participants 

they can acquire and the target population?  An initial step is to develop a taxonomy of the variables that 
affect human performance (where performance should include the behaviors of indicating preference and 
other choice behaviors). Gawron et al. (1989) produced a human performance taxonomy during the 
development of a human performance expert system.  They reviewed existing taxonomies and filled in some 
missing pieces.  They structured the taxonomy as having three top levels: environment, subject (person), 
and task.  The resulting taxonomy took up 12 pages in their paper, and covered many areas which would 
normally not concern a usability practitioner working in the field of computer system usability (for example, 
ambient vapor pressure, gravity, acceleration, etc.).  Some of the key human variables in the Gawron et al. 
(1989) taxonomy that could affect human performance with computer systems are: 

 
• Physical Characteristics 

∗ Age 
∗ Agility 
∗ Handedness 
∗ Voice 
∗ Fatigue 
∗ Gender 
∗ Body and body part size 

• Mental State 
∗ Attention span 
∗ Use of drugs (both prescription and illicit) 
∗ Long-term memory (includes previous experience) 
∗ Short-term memory 
∗ Personality traits 
∗ Work schedule 

• Senses 
∗ Auditory acuity 
∗ Tone perception 
∗ Tactual 
∗ Visual accommodation 
∗ Visual acuity 
∗ Color perception 
 

These variables can guide practitioners as they attempt to describe how participants and target 
populations are similar or different.  The Gawron et al. (1989) taxonomy does not provide much detail with 
regard to some individual differences that other researchers have hypothesized to affect human performance 
or preference with respect to the use of computer systems: personality traits and computer-specific 
experience. 

 
Aykin and Aykin (1991) performed a comprehensive review of the published studies to that date 

that involved individual differences in human-computer interaction (HCI).  Table 1 lists the individual 
differences that they found in published HCI studies, the method used to measure the individual difference, 
and whether there was any indication from the literature that manipulation of that individual difference led to 
a crossed interaction.   
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In statistical terminology, an interaction occurs whenever an experimental treatment has a different 
magnitude of effect depending on the level of a different, independent experimental treatment.  A crossed 
interaction occurs when the magnitudes have different signs, indicating reversed directions of effects.  As 
an example of an uncrossed interaction, consider the effect of turning off the lights on the typing 
throughput of blind and sighted typists.  The performance of the sighted typists would probably be worse, 
but the presence or absence of light shouldn’t affect the performance of the blind typists.  As an extreme 
example of a crossed interaction, consider the effect of language on task completion for people fluent only in 
French or English.  When reading French text, French speakers would outperform English speakers, and vice 
versa. 

 
Table 1.  Results of Aykin and Aykin (1991) review of individual differences in HCI 
 
Individual Difference Measurement Method Crossed Interactions 
Level of experience Various methods No 
Jungian personality types Myers-Briggs Type Indicator No 

Field dependence/ 
independence 

Embedded Figures Test 

Yes – field dependent 
participants preferred organized 
sequential item number search 
mode, but field independent 
subjects preferred the less 
organized keyword search mode 
(Fowler et al., 1985) 

Locus of control Levenson test No 
Imagery Individual Differences Questionnaire No 
Spatial ability VZ-2 No 
Type A/Type B personality Jenkins Activity Survey No 
Ambiguity tolerance Ambiguity Tolerance Scale No 
Sex Unspecified No 
Age Unspecified No 
Other (reading speed and 
comprehension, intelligence, 
mathematical ability) 

Unspecified No 

 
 
For any of these individual differences, the lack of evidence for crossed interactions could be due 

to a paucity of research involving the individual difference or could reflect the probability that individual 
differences will not typically cause crossed interactions in HCI.  In general, a change made to support a 
problem experienced by a person with a particular individual difference will either help other users or simply 
not affect their performance. 

 
For example, John Black (personal communication, 1988) cited the difficulty that field dependent 

users had working with one-line editors at the time (decades ago) when that was the typical user interface to 
a mainframe computer.  Switching to full-screen editing resulted in a performance improvement for both field 
dependent and independent users – an uncrossed interaction because both types of users improved, with 
the performance of field dependent users becoming equal to (thus improving more than) that of field 
independent users.  Landauer (1997) cites another example of this, in which Greene et al. (1986) found that 
young people with high scores on logical reasoning tests could master database query languages such as 
SQL with little training, but older or less able people could hardly ever master these languages.  They also 
determined that an alternative way of forming queries, selecting rows from a truth table, allowed almost 
everyone to make correct specification of queries, independent of their abilities.  Because this redesign 
improved the performance of less able users without diminishing the performance of the more able, it was an 
uncrossed interaction.  In a more recent study, Palmquist and Kim (2000) found that field dependence 
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affected the search performance of novices using a web browser (with field independent users searching 
more efficiently), but did not affect the performance of more experienced users. 

 
If there is a reason to suspect that an individual difference will lead to a crossed interaction as a 

function of interface design, then it could make sense to invest the time (which can be considerable) to 
categorize users according to these dimensions.  Another situation in which it could make sense to invest 
the time in categorization by individual difference would be if there were reasons to believe that a change in 
interface would greatly help one or more groups without adversely affecting other groups.  (This is a 
strategy that one can employ when developing hypotheses about ways to improve user interfaces.)  It 
always makes sense to keep track of user characteristics when categorization is easy (for example, age or 
sex).  Another potential use of these types of variables is as covariates (used to reduce estimates of 
variability) in advanced statistical analyses (Cliff, 1987). 

 
Aykin and Aykin (1991) reported effects of users’ levels of experience, but did not report any 

crossed interactions related to this individual difference.  They did report that interface differences tended 
to affect the performance of novices, but had little effect on the performance of experts.  It appears that 
behavioral differences related to user interfaces (Aykin and Aykin, 1991) and cognitive style (Palmquist and 
Kim, 2000) tend to fade with practice.  Nonetheless, user experience has been one of the few individual 
differences to receive considerable attention in HCI research (Fisher, 1991; Mayer, 1997; Miller et al., 1997; 
Smith et al., 1999).   

 
According to Mayer (1997), relative to novices, experts have: 
 
• better knowledge of syntax 
• an integrated conceptual model of the system 
• more categories for more types of routines 
• higher level plans. 
 
 Fisher (1991) emphasized the importance of discriminating between computer experience (which he 

placed on a novice-experienced dimension) and domain expertise (which he placed on a naïve-expert 
dimension).  LaLomia and Sidowski (1990) reviewed the scales and questionnaires developed to assess 
computer satisfaction, literacy and aptitudes.  None of the instruments they surveyed specifically addressed 
measurement of computer experience.  Miller et al. (1997) published the Windows Computer Experience 
Questionnaire (WCEQ), an instrument specifically designed to measure a person’s experience with 
Windows 3.1.  The questionnaire took about five minutes to complete and was reliable (coefficient alpha = 
.74; test-retest correlation = .97).  They found that their questionnaire was sensitive to three experiential 
factors: general Windows experience, advanced Windows experience, and instruction.  Smith et al. (1999) 
distinguished between subjective and objective computer experience.  The paper was relatively theoretical 
and “challenges researchers to devise a reliable and valid measure” (p. 239) for subjective computer 
experience, but did not offer one. 

 
One user characteristic not addressed in any of the cited literature is one that becomes very 

important when designing products for international use – cultural characteristics.  For example, it is 
extremely important that in adapting an interface for use by members of another country that all text is 
accurately translated.  It is also important to be sensitive to the possibility that these types of individual 
differences might be more likely than others to result in crossed interactions.   

 
For comparison studies, having multiple groups (for example, males and females or experts and 

novices) allows the assessment of potential interactions that might otherwise go unnoticed.  Ultimately, the 
decision for one or multiple groups must be based on expert judgment and a few guidelines.  For example, 
practitioners should consider sampling from different groups if they have reason to believe:  

 
• There are potential and important differences among groups on key measures (Dickens, 1987) 
• There are potential interactions as a function of group (Aykin and Aykin, 1991) 
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• The variability of key measures differs as a function of group  
• The cost of sampling differs significantly from group to group 
 
Gordon and Langmaid (1988) recommended the following approach to defining groups: 
 
1. Write down all the important variables. 
2. If necessary, prioritize the list. 
3. Design an ideal sample. 
4. Apply common sense to collapse cells. 
 
For example, suppose a practitioner starts with 24 cells, based on the factorial combination of six 

demographic locations, two levels of experience, and the two levels of gender.  The practitioner should ask 
himself or herself whether there is a high likelihood of learning anything new and important after completing 
the first few cells, or would additional testing be wasteful?  Can one learn just as much from having one or a 
few cells that are homogeneous within cells and heterogeneous between cells with respect to an important 
variable, but are heterogeneous within cells with regard to other, less important variables?  For example, a 
practitioner might plan to (1) include equal numbers of males and females over and under 40 years of age in 
each cell, (2) have separate cells for novice and experienced users, and (3) drop intermediate users from the 
test.  The resulting design requires testing only two cells (groups), but a design that did not comb ine 
genders and age groups in the cells would have required eight cells. 

 
The final issue is the number of participants to include in the test.  According to Dumas and Redish 

(1999), typical usability tests have 6 to 12 participants divided among two to three subgroups.  For any 
given test, the required sample size depends on the number of subgroups, available resources (time/money), 
and the purpose of the test (for example, precise measurement versus problem discovery).  It also depends 
on whether a study is single-shot (needing a larger sample size) or iterative (needing a smaller sample size 
per iteration, building up the total sample size over iterations).  For a more detailed treatment of this topic, 
see the section below on sample size estimation. 

 
Test Task Scenarios   

As with participants, the most important consideration for test tasks is that they are representative 
of the types of tasks real users will perform with the product.  For any product, there will be a core set of 
tasks that anyone using the product will perform.  People who use barbecue grills use them to cook.  People 
who use desktop speech dictation products use them to produce text.  For usability tests, these are the most 
important tasks to test.   

 
 After defining these core tasks, the next step is to list any more peripheral tasks that the test 
should cover.  If a barbecue grill has an external burner for heating pans, it might make sense to include a 
task that requires participants to work with that burner.  If, in addition to the basic vocabulary in a speech 
dictation system, the program allows users to enable additional special topic vocabularies such as cooking 
or sports, then it might make sense to devise a task that requires participants to activate and use one of 
these topics.  Practitioners should avoid frivolous or humorous tasks because what is humorous to one 
person might be offensive to another.   
 

From the list of test tasks, create scenarios of use (with specific goals) that require participants to 
perform the identified tasks.  Critical tasks can appear in more than one scenario.  For repeated tasks, vary 
the task details to increase the generalizability of the results.  When testing relatively complex systems, 
some scenarios should stay within specific parts of the system (for example, typing and formatting a 
document) and others should explore usage across different parts of the system (for example, creating a 
figure using a spreadsheet program, adding it to the document, attaching the document to a note, and 
sending it to a specified recipient). 

 
The complete specification of a scenario should include several items.  It is important to document 

(but not to share with the participant), the required initial conditions so it will be easy to determine before a 
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test session starts that the system is ready.  The written description of the scenario (presented to the 
participant) should state what the participant is trying to achieve and why (the motivation), keeping the 
description of the scenario as short as possible to keep the test session moving quickly.  The scenario 
should end with an instruction for the action the participant should take upon finishing the task (to make it 
easier to measure task completion times).  The descriptions of the scenario’s tasks should not typically 
provide step-by-step instructions on how to complete the task, but should include details (for example, 
actual names and data) rather than general statements.  The order in which participants complete scenarios 
should reflect the way in which users would typically work and with the importance of the scenario, with 
important scenarios done first unless there are other less important scenarios that produce outputs that the 
important scenario requires as an initial condition.  Not all participants need to receive the same scenarios, 
especially if there are different groups under study.  The tasks performed by administrators of a web system 
that manages subscriptions will be different from the tasks performed by users who are requesting 
subscriptions.   

 
 Here are some examples of scenarios: 
 
 Example 1: “Frank Smith's business telephone number has changed to (896) 555-1234.  Please 
change the appropriate address book entry so you have this new phone number available when you need it.  
When you have finished, please say ‘I’m done.’” 
 
 Example 2: “You’ve just found out that you need to cancel a car reservation that you made for next 
Wednesday.  Please call the system that you used to make the reservation (1-888-555-1234) and cancel it.  
When you have finished, please hang up the phone and say ‘I’m done.’” 
 
Procedure  

The test plan should include a description of the procedures to follow when conducting a test 
session.  Most test sessions include an introduction, task performance, post-task activities, and debriefing. 

 
 A common structure for the introduction is for the briefer (see the section above on testing roles) 
to start with the purpose of the test, emphasizing that its goal is to improve the product, not to test the 
participant.  Participation is voluntary, and the participant can stop at any time without penalty.  The briefer 
should inform the participant that all test results will be confidential.  The participant should be aware of any 
planned audio or video recording.  Finally, the briefer should provide any special instructions (for example, 
think-aloud instructions) and answer any other questions that the participant might have.   
 

The participant should then complete any preliminary questionnaires and forms, such as a 
background questionnaire, an informed consent form (including consent for any recording, if applicable), 
and, if necessary, a confidential disclosure form.  If the participant will be using a workstation, the briefer 
should help the participant make any necessary adjustments (unless, of course, the purpose of the test is to 
evaluate workstation adjustability).  Finally, the participant should complete any prerequisite training.  This 
can be especially important if the goal of the study is to investigate usability after some period of use (ease 
of use) rather than immediate usability (ease of learning). 

 
 The procedure section should indicate the order in which participants will complete task scenarios.  
For each participant, start with the first assigned task scenario and complete additional scenarios until the 
participant finishes (or runs out of time).  The procedure section should specify when and how to interact 
with participants, according to the type of study.  This section should also indicate when it is permissible to 
provide assistance to participants if they encounter difficulties in task performance.   
 

Normally, practitioners should avoid offering assistance unless the participant is visibly distressed.  
When participants initially request help at a given step in a task, refer them to documentation or other 
supporting materials if available.  If that doesn’t help, then provide the minimal assistance required to keep 
the participant moving forward in the task, note the assistance, and score the task as failed.  When 
participants ask questions, try to avoid direct answers, instead turning their attention back to the task and 
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encouraging them to take whatever action seems right at that time.  When asking questions of participants, 
it is important to avoid biasing the participant’s response.  Try to avoid the use of loaded adjectives and 
adverbs in questions (Dumas and Redish, 1999).  Instead of asking if a task was easy, ask the participant to 
describe what it was like performing the task.  Give a short satisfaction questionnaire (such as the ASQ – 
see the section on questionnaires for details) at the end of each scenario. 

 
 After participants have finished the assigned scenarios, it is common to have them complete a final 
questionnaire, usually a standard questionnaire and any additional items required to cover other test- or 
product-specific issues.  For standardized questionnaires, ISO lists the SUMI (Software Usability 
Measurement Inventory – Kirakowski, 1996; Kirakowski and Corbett, 1993) and PSSUQ (Post-Study System 
Usability Questionnaire – Lewis, 1995, 2002).  In addition to the SUMI and PSSUQ, ANSI lists the QUIS 
(Questionnaire for User Interaction Satisfaction – Chin et al., 1988) and SUS (System Usability Scale – 
Brooke, 1996) as widely used questionnaires. After completing the final questionnaire, the briefer should 
debrief the participant.  Toward the end of debriefing, the briefer should tell the participant that the test 
session has turned up several opportunities for product improvement (this is almost always true), and thank 
the participant for his or her contribution to product improvement.  Finally, the briefer should discuss any 
questions the participant has about the test session, and then take care of any remaining activities , such as 
completing time cards.  If there has been any deception employed in the test (which is rare, but can 
legitimately happen when conducting certain types of simulations), the briefer must inform the participant. 
 
Pilot Testing  

Practitioners should always plan for a pilot test before running a usability test.  A usability test is a 
designed artifact, and like any other designed artifact needs at least some usability testing to find problems 
in the test procedures and materials.  A common strategy is to have an initial walkthrough with a member of 
the usability test team or some other convenient participant.  After making the appropriate adjustments, the 
next pilot participant should be a more representative participant.  If there are no changes made to the 
design of the usability test after running this participant, then the second pilot participant can become the 
first real participant (but this is rare).  Pilot testing should continue until the test procedures and materials 
have become stable. 

 
Number of Iterations  

It is better to run one usability test than not to run any at all.  On the other hand, “usability testing 
is most powerful and most effective when implemented as part of an iterative product development process” 
(Rubin, 1994, p. 30).  Ideally, usability testing should begin early and occur repeatedly throughout the 
development cycle.  When development cycles are short, it is a common practice to run, at a minimum, 
exploratory usability tests on prototypes at the beginning of a project, to run a usability test on an early 
version of the product during the later part of functional testing, and then to run another during system 
testing.  Once the final version of the product is available, some organizations run an additional usability 
test focused on the measurement of usability performance benchmarks.  At this stage of development, it is 
too late to apply information about any problems discovered during the usability test to the soon-to-be-
released version of the product, but the information can be useful as early input to a follow-on product if the 
organization plans to develop another version of the product. 

 
Ethical Treatment of Test Participants   

Usability testing always involves human participants, so usability practitioners must be aware of 
professional practices in the ethical treatment of test participants.  Practitioners with professional education 
in experimental psychology are usually familiar with the guidelines of the American Psychology Association 
(APA, see http://www.apa.org/ethics/), and those with training in human factors engineering are usually 
familiar with the guidelines of the Human Factors and Ergonomics Society (HFES, see 
http://www.hfes.org/About/Code.html).  It is particularly important (Dumas, 2003) to be aware of the 
concepts of informed consent (participants are aware of what will happen during the test, agree to 
participate, and can leave the test at any time without penalty) and minimal risk (participating in the test 
does not place participants at any greater risk of harm or discomfort than situations normally encountered in 
daily life).  Most usability tests are consistent with guidelines for informed consent and minimal risk.  Only 
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the test administrator should be able to match a participant’s name and data, and the names of test 
participants should be confidential.  Anyone interacting with a participant in a usability test has a 
responsibility to treat the participant with respect.   

 
 Usability practitioners rarely use deception in usability tests.  One technique in which there is 
potential use of deception is the Wizard of Oz (WOZ) method (originally, the OZ Paradigm, Kelley, 1985, 
also see http://www.musicman.net/oz.html).  In a test using the WOZ method, a human (the Wizard) plays 
the part of the system, remotely controlling what the participant sees happen in response to the 
participant’s manipulations.  This method is particularly effective in early tests of speech recognition 
interactive voice response (IVR) systems because all the Wizard needs is a script and a phone (Sadowski, 
2001).  Often, there is no compelling reason to deceive participants, so they know that the system they are 
working with is remotely controlled by another person for the purpose of early evaluation.  If there is a 
compelling need for deception (for example, to manage the participant's expectations and encourage natural 
behaviors), then this deception must be revealed to the participant during debriefing. 
 
Reporting Results 

There are two broad classes of usability test results, problem reports and quantitative 
measurements.  It is possible for a test report to contain one type exclusively (for example, the ANSI 
Common Industry Format has no provision for reporting problems), but most usability test reports will 
contain both types of results.   

 
Describing Usability Problems   

“We broadly define a usability defect as: Anything in the product that prevents a target user from 
achieving a target task with reasonable effort and within a reasonable time. … Finding usability problems is 
relatively easy.  However, it is much harder to agree on their importance, their causes and the changes that 
should be made to eliminate them (the fixes).” (Marshall et al., 1990, p. 245) 

 
The best way to describe usability problems depends on the purpose of the descriptions.  For 

usability practitioners, the goal should be to describe problems in such a way that the description leads 
logically to one or more potential interventions (recommendations).  Ideally, the problem description should 
also include some indication of the importance of fixing the problem (most often referred to as problem 
severity).  For more scientific investigations, there can be value in higher levels of problem description 
(Keenan et al., 1999), but developers rarely care about these levels of description.  They just want to know 
what they need to do to make things better while also managing the cost (both monetary and time) of 
interventions (Gray and Salzman, 1998). 

 
 The problem description scheme of Lewis and Norman (1986) has both scientific and practical merit 
because their problem description categories indicate, at least roughly, an appropriate intervention.  They 
stated (p. 413) that “although we do not believe it possible to design systems in which people do not make 
errors, we do believe that much can be done to minimize the incidence of error, to maximize the discovery of 
the error, and to make it easier to recover from the error.”  They separated errors into mistakes (errors due to 
incorrect intention) and slips (errors due to appropriate intention but incorrect action), further breaking slips 
down into mode errors (which indicate a need for better feedback or elimination of the mode), capture errors 
(which indicate a need for better feedback), and description errors (which indicate a need for better design 
consistency).  In one study using this type of problem categorization, Prümper et al. (1992) found that 
expertise did not affect the raw number of errors made by participants in their study, but experts handled 
errors much more quickly than novices.  The types of errors that experts made were different from those 
made by novices, with experts’ errors primarily occurring at the level of slips rather than mistakes 
(knowledge errors).   
 

Rasmussen (1986), using an approach similar to that of Lewis and Norman (1986), described three 
levels of errors: skill-based, rule-based, and knowledge-based.  Two relatively new classification schemes 
are Structured Usability Problem EXtraction, or SUPEX (Cockton and Lavery, 1999) and the User Action 
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Framework, or UAF (Andre et al., 2000).  The UAF requires a series of decisions, starting with an Interaction 
Cycle (Planning, Physical Actions, Assessment) based on the work of Norman (1986).  Most classifications 
require four or five decisions, with inter-rater reliability (as measured with kappa) highest at the first step 
(κ=.978), but remaining high through the fourth and fifth steps (κ>.7).   

 
Whether any of these classification schemes will see widespread use by usability practitioners is 

still unknown.  There is considerable pressure on practitioners to produce results and recommendations as 
quickly as possible.  Even if these classification schemes see little use by practitioners, effective problem 
classification is a very important problem to solve as usability researchers strive to compare and improve 
usability testing methods. 

 
Crafting Design Recommendations from Problem Descriptions   

As indicated by the title of this section, the development of recommendations from problem 
descriptions is a craft rather than a rote procedure.  A well-written problem description will often strongly 
imply an intervention, but it is also often the case that there might be several ways to attack a problem.  It 
can be helpful for practitioners to discuss problems and potential interventions with the other members of 
their team, and to get input from other stakeholders as necessary (especially, the developers of the product).  
This is especially important if the practitioner has observed problems but is uncertain as to the appropriate 
level of description of the problem.   

 
For example, suppose you have written a problem description about a missing Help button in a 

software application.  This could be a problem with the overall design of the software, or might be a problem 
isolated to one screen.  You might be able to determine this by inspecting other screens in the software, but 
it could be faster to check with one of the developers.   

 
The first recommendations to consider should be for interventions that will have the widest impact 

on the product.  “Global changes affect everything and need to be considered first.” (Rubin, 1994, p. 285)  
After addressing global problems, continue working through the problem list until there is at least one 
recommendation for each problem.  For each problem, start with interventions that would eliminate the 
problem, then follow, if necessary, with other less drastic (less expensive, more likely to be implemented) 
interventions that would reduce the severity of the remaining usability problem.  When different 
interventions involve different tradeoffs, it is important to communicate this clearly in the recommendations.  
This approach can lead to two tiers of recommendations – those that will happen for the version of the 
product currently under development (short-term) and those that will happen for a future version of the 
product (long-term). 

 
Prioritizing Problems   

Because usability tests can reveal more problems than there are resources to address, it is 
important to have some means for prioritizing problems.  There are two approaches to prioritization that have 
appeared in the usability testing literature: (1) judgment driven (Virzi, 1992) and (2) data driven (Dumas and 
Redish, 1999; Lewis et al., 1990; Rubin, 1994).  The bases for judgment-driven prioritizations are the ratings 
of stakeholders in the project (such as usability practitioners and developers).  The bases for data-driven 
prioritizations are the data associated with the problems, such as frequency, impact, ease of correction, and 
likelihood of usage of the portion of the product that was in use when the problem occurred.  Of these, the 
most common measurements are frequency and impact (sometimes referred to as severity, although, strictly 
speaking, severity should include the effect of all of the types of data considered for prioritization).  
Hassenzahl (2000), in a study of the two approaches to prioritization, found a lack of correspondence 
between data-driven and judgment-driven severity estimates.  This suggests that the preferred approach 
should be data-driven. 

 
The usual method for measuring the frequency of occurrence of a problem is to divide the number 

of occurrences within participants by the number of participants.  A common method (Dumas and Redish, 
1999; Rubin, 1994) for assessing the impact of a problem is to assign impact scores according to whether the 
problem (1) prevents task completion, (2) causes a significant delay or frustration, (3) has a relatively minor 
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effect on task performance, or (4) is a suggestion.  This is similar to the scheme of Lewis et al. (1990), in 
which the impact levels were (1) scenario failure or irretrievable data loss (for example, the participant 
required assistance to get past the problem or caused the participant to believe the scenario to be properly 
completed when it wasn’t), (2) considerable recovery effort (recovery took more than one minute or the 
participant repeatedly experienced the problem within a scenario), (3) minor recovery effort (the problem 
occurred only once within a scenario with recovery time at or under one minute), or (4) inefficiency (a 
problem not meeting any of the other criteria).   

 
 When considering multiple types of data in a prioritization process, it is necessary to combine the 
data in some way.  A graphical approach is to create a problem grid with frequency on one axis and impact 
on the other (see Figure 3).  High-frequency high-impact problems would receive treatment before low-
frequency low-impact problems.  The relative treatment of high-frequency low-impact problems and low-
frequency high-impact problems depends on practitioner judgment. 
 
 An alternative approach is to combine the data arithmetically.  Rubin (1994) described a procedure 
for combining four levels of impact (using the criteria described above with 4 assigned to the most serious 
level) with four levels of frequency (4: frequency = 90%; 3: 51-89%; 2: 11-50%; 1: = 10%) by adding the 
scores.  For example, if a problem had an observed frequency of occurrence of 80% and had a minor effect 
on performance, then its priority would be 5 (a frequency rating of 3 plus an impact rating of 2).  With this 
approach, priority scores can range from a low of 2 to a high of 8.  If information is available about the 
likelihood that a user would work with the part of the product that enables the problem, then this information 
would be used to adjust the frequency rating.  Continuing the example, if the expectation is that only 10% of 
users would encounter the problem, then the priority would be 3 (a frequency rating of 1 for the 10% x 80%, 
or 8% likelihood of occurrence plus an impact rating of 2). 
 
 A similar strategy is to multiply the observed percentage frequency of occurrence by the impact 
score.  The range of priorities depends on the values assigned to each impact level.  Assigning 10 to the 
most serious impact level leads to a maximum priority (severity) score of 1000 (which can optionally be 
divided by 10 to create a scale that ranges from 1 to 100).  Appropriate values for the remaining three impact 
categories depend on practitioner judgment, but a reasonable set is 5, 3, and 1.  Using those values, the 
problem with an observed frequency of occurrence of 80% and a minor effect on performance would have a 
priority of 24 (80 x 3/10).  It is possible to extend this method to account for likelihood of use using the same 
procedure as that described by Rubin (1994), which in the example resulted in modifying the frequency 
measurement from 80% to 8%.  Another way to extend the method is to categorize the likelihood of use with 
a set of categories such as very high likelihood (assigned a score of 10), high likelihood (assigned a score of 
5), moderate likelihood (assigned a score of 3), and low likelihood (assigned a score of 1), and multiplying all 
three scores to get the final priority (severity) score (then optionally divide by 100 to create a scale that 
ranges from 1 to 100).  Continuing the previous example with the assumption that the task in which the 
problem occurred has a high likelihood of occurrence, the problem’s priority would be 12 (5 x 240/100).  In 
most cases, applying the different data-driven prioritization schemes to the same set of problems should 
result in a very similar prioritization. 
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Figure 3.  Sample problem grid. 

 
Working with Quantitative Measurements   

The most common use of quantitative measurements is to characterize performance and preference 
variables by computing means, standard deviations, and, ideally, confidence intervals.  Practitioners use 
these results to compare observed to target measurements when targets are available.  When targets are not 
available, the results can still be informative, for example, for use as future target measurements or as 
relatively gross diagnostic indicators.   

 
The failure to meet targets is an obvious diagnostic cue.  A less obvious cue is an unusually large 

standard deviation.  Landauer (1997) describes a case in which the times to record an order were highly 
variable.  The cause for the excessive variability was that a required phone number was sometimes, but not 
always, available, which turned out to be an easy problem to fix.  Because the means and standard 
deviations of time scores tend to correlate, one way to detect an unusually large variance is to compute the 
coefficient of variation by dividing the standard deviation by the mean (Jeff Sauro, personal communication, 
April 26, 2004) or the normalized performance ratio by dividing the mean by the standard deviation (Moffat, 
1990).  Large coefficients of variation (or, correspondingly, small normalized performance ratios) are 
potentially indicative of the presence of usability problems. 
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ADVANCED TOPICS 
 

This section covers more advanced topics in usability testing, including sample size estimation for 
problem discovery and measurement tests (both comparative and parameter estimation), confidence 
intervals based on t-scores and binomial confidence intervals, and standardized usability questionnaires.  
This chapter contains a considerable amount of information about statistical topics because statistical 
methods do not typically receive much attention in chapters on usability testing and, properly practiced, 
these techniques can be very valuable.  On the other hand, practitioners should keep in mind that the most 
important factors that lead to successful usability evaluation are the appropriate selection of participants 
and tasks.  No statistical analysis can repair a study in which you watch the wrong people doing the wrong 
activities.   

 
Sample Size Estimation 

The purpose of this section is to discuss the principles of sample size estimation for three types of 
usability test: population parameter estimation, comparative (also referred to as experimental), and problem-
discovery (also referred to as diagnostic, observational, or formative).  This section assumes some 
knowledge of introductory applied statistics, so if you’re not comfortable with terms such as mean, variance, 
standard deviation, p, t-score, and Z-score, refer to an introductory statistics text such as Walpole (1976) for 
definitions of these and other fundamental terms.   

 
 Sample size estimation requires a blend of mathematics and judgment.  The computations are 
straightforward, and it is possible to make reasoned judgments (for example, judgments about expected 
costs and precision requirements) for those values that the mathematics cannot determine.   
 
Sample Size Estimation for Parameter Estimation and Comparative Studies   

Traditional sample size estimation for population parameter estimation and comparative studies 
depends on having an estimate of the variance of the dependent measure(s) of interest and an idea of how 
precise (the magnitude of the critical difference and the statistical confidence level) the measurement must 
be (Walpole, 1976).  Once you have that, the rest is mathematical mechanics (typically using the formula for 
the t statistic.)     
 

You can (1) get an estimate of variance from previous studies using the same method (same or 
similar tasks and measures), (2) you can run a quick pilot study to get the estimate (for example, piloting with 
four participants should suffice to provide an initial estimate of variability), or (3) you can set the critical 
difference your are trying to detect to some fraction of the standard deviation (Diamond, 1981).  (See the 
following examples for more details about these different methods).   

 
Certainly, people prefer precise measurement to imprecise measurement, but all other things being 

equal, the more precise a measurement is, the more it will cost, and running more participants than necessary 
is wasteful of resources (Kraemer and Thiemann, 1987).  The process of carrying out sample size estimation 
can also lead usability practitioners and their management to a realistic determination of how much precision 
they really need to make their required decisions. 

 
Alreck and Settle (1985) recommend using a ‘what if’ approach to help decision makers determine 

their required precision.  Start by asking the decision maker what would happen if the average value from the 
study was off the true value by one percent.  Usually, the response would be that a difference that small 
wouldn’t matter.  Then ask what would happen if the measurement were off by five percent.  Continue until 
you determine the magnitude of the critical difference.  Then start the process again, this time pinning down 
the required level of statistical confidence.  Note that statistically unsophisticated decision makers are likely 
to start out by expecting 100% confidence (which is only possible by sampling every unit in the population).  
Presenting them with the sample sizes required to achieve different levels of confidence can help them settle 
in on a more realistic confidence level.   
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Example 1: Parameter estimation given estimate of variability and realistic criteria. The following 

example illustrates the process of computing the sample size requirement for the estimation of a population 
parameter given an existing estimate of variability and realistic measurement criteria.  For speech recognition 
applications, the recognition accuracy is an important value to track due to the adverse effects 
misrecognitions have on product usability.  Thus, part of the process of evaluating the usability of a speech 
recognition product is estimating its accuracy.  For this example, suppose: 

 
• Recognition variability (variance) from a previous similar evaluation = 6.35 
• Critical difference (d) = 2.5% 
• Desired level of confidence: 90% 
 

The appropriate procedure for estimating a population parameter is to construct a confidence 
interval (Bradley, 1976).  To determine the upper and lower limits of a confidence interval, add to and 
subtract the following from the observed mean: 

 
[1] sem * tcrit  

 
where sem is the standard error of the mean (the standard deviation, S, divided by the square root of the 
sample size, n) and tcrit is the t-value associated with the desired level of confidence (found in a t-table, 
available in most statistics texts).  Setting the critical difference to 2.5 is the same as saying that the value of 
sem * tcrit should be equal to 2.5.  In other words, you don’t want the upper or lower bound of the 
confidence interval to be more than 2.5 percentage points away from the observed mean, for a confidence 
interval width equal to 5.0. 
 

Calculating the sem depends on knowing the sample size, and the value of tcrit also depends on the 
sample size, but you don’t know the sample size yet.  Iterate using the following method.   

 
1. Start with the Z-score for the desired level of confidence in place of tcrit.  For 90% confidence, this is 

1.645. (By the way, if you actually know the true variability for the measurement rather than just having 
an estimate, you’re done at this point because it’s appropriate to use the Z-score rather than a t-score.  
However, you almost never know the true variability, but must work with estimates.) 

2. Algebraic manipulations based on the formula sem * Z = d results in n = (Z2*S2)/d2 which, for this 
example, is n = (1.6452*6.35)/2.52, which equals 2.7.  Always round sample size estimates up to the next 
whole number, so this initial estimate is 3. 

3. Now you need to adjust the estimate by replacing the Z-score with the t-score for a sample size of 3.  
For this estimate, the degrees of freedom (df) to use when looking up the value in a t table is n-1, or 2.  
This is important because the value of Z will always be smaller than the appropriate value of t, making 
the initial estimate smaller than it should be.  For this example, tcrit is 2.92.   

4. Recalculating for n using 2.92 in place of 1.645 produces 8.66, which rounds up to 9.   
5. Because the appropriate value of tcrit is now a little smaller than 2.92 (because the estimated sample size 

is now larger, with 9-1 or 8 degrees of freedom), recalculate n again, using tcrit equal to 1.860.  The new 
value for n is 3.515, which rounds up to 4. 

6. Stop iterating when you get the same value for n on two iterations or you begin cycling between two 
values for n, in which case you should choose the larger value.  Table 2 shows the full set of iterations 
for this example, which ends by estimating the appropriate sample size as 5. 



 

 29  

 

Table 2. Full set of iterations for Example 1 
    Iteration   
 Initial 1 2 3 4 5 

tcrit 1.645 2.92 1.86 2.353 2.015 2.132 
tcrit

 2 2.71 8.53 3.46 5.54 4.06 4.55 

S2 6.35 6.35 6.35 6.35 6.35 6.35 

d 2.5 2.5 2.5 2.5 2.5 2.5 
       

Estimated n 2.7493 8.663 3.515 5.6252 4.1252 4.618 
Rounded up 3 9 4 6 5 5 
df 2 8 3 5 4 4 
 
 

Note that there is nothing in these computations that makes reference to the size of the population.  
Unless the size of the sample is a significant percentage of the total population under study (which is rare, 
but correctable using a finite population correction), the size of the population is irrelevant.  Alreck and 
Settle (1985) explain this with a soup-tasting analogy.  Suppose you’re cooking soup in a one-quart 
saucepan, and want to test if it’s hot enough.  You would stir it thoroughly, then taste one teaspoon.  If it 
were a two-quart saucepan, you’d follow the same procedure – stir thoroughly, then taste one teaspoon. 

 
Diamond (1981) points out that you can usually get by with an initial estimate and one iteration 

because most researchers don’t mind having a sample size that’s a little larger than necessary.  If the cost of 
each sample is high, though, it makes sense to iterate until reaching one of the stopping criteria.  Note that 
the initial estimate establishes the lower bound for the sample size (3 in this example), and the first iteration 
establishes the upper bound (9 in this example). 

 
Example 2: Parameter estimation given estimate of variability and unrealistic criteria.  The 

measurement criteria in Example 1 were reasonable – 90% confidence that the interval (limited to a total 
length of 5%) contains the true mean.  The next example (Example 2) shows what happens when the 
measurement criteria are less realistic, illustrating the potential cost associated with high confidence and 
high measurement precision.  Suppose the measurement criteria for the situation described in Example 1 were 
less realistic, with: 

 
• Recognition variability from a previous similar evaluation = 6.35 
• Critical difference (d) = .5% 
• Desired level of confidence: 99% 
 

In that case, the initial Z-score would be 2.576, and the initial estimate of n would be: 
 
 [2] n = (2.5762*6.35)/.52 = 168.549 (which rounds up to 169). 
 

Recalculating n with tcrit equal to 2.605 (t with 168 degrees of freedom) results in n equal to 172.37, 
which rounds up to 173. (Rather then continuing to iterate, note that the final value for the sample size must 
lie between 169 and 173.)  There might be some industrial environments in which usability investigators 
would consider 169 to 173 participants a reasonable and practical sample size, but they are rare.  (On the 
other hand, collecting data from this number of participants or more in a mailed survey is common.) 

 
Example 3: Parameter estimation given no estimate of variability.  For both Examples 1 and 2, it 

doesn’t matter if the estimate of variability came from a previous study or a quick pilot study.  Suppose, 
however, that you don’t have any idea what the measurement variability is, and it’s too expensive to run a 
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pilot study to get an initial estimate.  Example 3 illustrates a technique (from Diamond, 1981) for getting 
around this problem.  To do this, though, you need to give up a definition of the critical difference (d) in 
terms of the variable of interest and replace it with a definition in terms of a fraction of the standard 
deviation.   

 
In this example, the measurement variance is unknown.  To get started, the testers have decided 

that, with 90% confidence, they do not want d to exceed half the value of the standard deviation.  The 
measurement criteria are: 

 
• Recognition variability from a previous similar evaluation = N/A 
• Critical difference (d) = .5S 
• Desired level of confidence: 90% 
 

The initial sample size estimate is:  
 
 [3] n = (1.6452*S2)/(.5S)2 = (1.6452)/(.5)2 = 10.824, which rounds up to 11. 
 

The result of the first iteration, replacing 1.645 with tcrit for 10 degrees of freedom (1.812), results in a 
sample size estimation of 13.13, which rounds up to 14.  The appropriate sample size is therefore somewhere 
between 11 and 14, with the final estimate determined by completing the full set of iterations. 

 
Example 4: Comparing a parameter to a criterion.  For an example comparing a measured 

parameter to a criterion value, suppose that you have a product requirement that installation should take no 
more than 30 minutes.  In a preliminary evaluation, participants needed an average of 45 minutes to complete 
installation.  Development has fixed a number of usability problems found in that preliminary study, so 
you’re ready to measure installation time again, using the following measurement criteria: 

 

• Performance variability from the previous evaluation = 10.0 
• Critical difference (d) = 3 minutes 
• Desired level of confidence: 90% 
 

The interpretation of these measurement criteria is that we want to be 90% confident that we can 
detect a difference as small as 3 minutes between the mean of the data we gather in the test and the criterion 
we’re trying to beat.  In other words, the installation will pass if the observed mean time is 27 minutes or 
less, because the sample size should guarantee an upper limit to the confidence interval that is no more than 
3 minutes above the mean (as long as the observed variance is less than or equal to the initial estimate of the 
variance).  The procedure for determining the sample size in this situation is the same as that of Example 1, 
shown in Table 3.  The outcome of these iterations is a sample size requirement of 6 because the sample size 
estimates begin cycling between 5 and 6. 
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Table 3. Full set of iterations for Example 4 
 Initial 1 2 3 4 

tcrit 1.645 2.353 1.943 2.132 2.015 
tcrit

 2 2.706 5.537 3.775 4.545 4.060 
s2 10 10 10 10 10 
d 3 3 3 3 3 
d2 9 9 9 9 9 

      
Estimated n 3.006694 6.151788 4.194721 5.050471 4.511361 
Rounded up 4 7 5 6 5 
df 3 6 4 5 4 
 
 

Example 5: Sample size for a paired t-test.  When you obtain two comparable measurements from 
each participant in a test (a within-subjects design), you can assess the results using a paired t-test.  
Another name for a “”paired t-test” is a “difference score t-test”, because the measurements of concern are 
the mean and standard deviation of the set of difference scores rather than the raw scores.  Suppose you 
plan to obtain recognition accuracy scores from participants who have dictated test texts into your product 
under development and a competitor’s product (following all the appropriate experimental design 
procedures such as counterbalancing the order of presentation of products to participants – see a text such 
as Myers, 1979 for guidance in experimental design), using the following criteria: 

 
• Difference score variability from a previous evaluation = 5.0 
• Critical difference (d) = 2% 
• Desired level of confidence: 90% 
 

This situation is similar to that of the previous example, because the typical goal of a difference 
scores t-test is to determine if the average difference between the scores is statistically significantly 
different from 0.  Thus, the usability criterion in this case is 0, and we want to be 90% confident that if the 
true difference between the systems’ accuracies is 2% or more, then we will be able to detect it because the 
confidence interval for the difference scores will not contain 0.  Table 4 shows the iterations for this 
situation, leading to a sample size estimate of 6. 

 

Table 4.  Full set of iterations for Example 5 
 Initial 1 2 3 4 

tcrit 1.645 2.353 1.943 2.132 2.015 
tcrit

 2 2.706 5.537 3.775 4.545 4.060 
s2 5 5 5 5 5 
d 2 2 2 2 2 
d2 4 4 4 4 4 

      
Estimated n 3.382531 6.920761 4.719061 5.68178 5.075281 
Rounded up 4 7 5 6 6 
df 3 6 4 5 5 
 

 
Example 6: Sample size for a two-groups t-test.  Up to this point, the examples have all involved 

one group of scores, and have been amenable to similar treatment.  If you have a situation in which you plan 
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to compare scores from two independent groups, then things get a little more complicated.  For one thing, 
you now have two sample sizes to consider – one for each group.   

 
To simplify things in this example, assume that the groups are essentially equal (especially with 

regard to performance variability), which should be the case if the groups contain participants from a single 
population who have received random assignment to treatment conditions.  In this case, it is reasonable to 
believe that the sample size for both groups will be equal, which simplifies things.  For this situation, the 
formula for the initial estimate of the sample size for each group is: 

 
 [4] n = (2*Z2*S2)/d2 

 
Note that this is the similar to the formula presented in Example 1, with the numerator multiplied by 

2.  After getting the initial estimate, begin iterating using the appropriate value for tcrit in place of Z.  For 
example, suppose we needed to conduct the experiment described in Example 5 with independent groups of 
participants, keeping the measurement criteria the same: 

 

• Estimate of variability from a previous evaluation = 5.0 
• Critical difference (d) = 2% 
• Desired level of confidence: 90% 
 

In that case, iterations would converge on a sample size of 9 participants per group, for a total 
sample size of 18, as shown in Table 5. 

 

Table 5.  Full set of iterations for Example 6 
 Initial 1 2 3 

tcrit 1.645 1.943 1.833 1.86 
tcrit

 2 2.706 3.775 3.360 3.460 
s2 5 5 5 5 
d 2 2 2 2 
d2 4 4 4 4 

     
Estimated n 6.765 9.438 8.400 8.649 
Rounded up 7 10 9 9 
df 6 9 8 8 
 

 
This illustrates the well-known measurement efficiency of experiments that produce difference 

scores (within-subjects designs) relative to experiments involving independent groups (between-subjects 
designs).  For the same measurement precision, the estimated sample size for Example 5 was six participants, 
1/3 the sample size requirement estimated for Example 6. 

 
Doing this type of analysis  gets more complicated if you have reason to believe that the groups are 

different, especially with regard to variability of performance.  In that case, you would want to have a larger 
sample size for the group with greater performance variability in an attempt to obtain more equal precision of 
measurement for each group.  Advanced market research texts (such as Brown, 1980) provide sample size 
formulas for these situations. 

 
Example 7: Making power explicit in the sample size formula.  The power of a procedure is not an 

issue when estimating the value of a parameter, but it is an issue when testing a hypothesis (as in Example 
6).  In traditional hypothesis testing, there is a null (Ho) and an alternative (Ha) hypothesis.  The typical null 
hypothesis is that there is no difference between groups, and the typical alternative hypothesis is that the 
difference is greater than zero.  When the alternative hypothesis is that the difference is nonzero, the test is 
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two-tailed because you can reject the null hypothesis with either a sufficiently positive or a sufficiently 
negative outcome.  If you have reason to believe that you can predict the direction of the outcome, or if an 
outcome in only one direction is meaningful, you can construct an alternative hypothesis that considers 
only a sufficiently positive or a sufficiently negative outcome (a one-tailed test).  For more information, see 
an introductory statistics text (such as Walpole, 1976). 

 
When you test a hypothesis (for example, that the difference in recognition accuracy between two 

competitive dictation products is nonzero), there are two ways to make a correct decision and two ways to 
be wrong, as shown in Table 6. 

 
Table 6.  Possible outcomes of a hypothesis test 
  Reality 
Decision Ho is true Ho is false 

Insufficient evidence to reject Ho Fail to reject Ho Type II error 
Sufficient evidence to reject Ho Type I error Reject Ho 
 

 
Strictly speaking, you never accept the null hypothesis, because the failure to acquire sufficient 

evidence to reject the null hypothesis could be due to (1) no significant difference between groups or (2) a 
sample size too small to detect an existing difference.  Rather than accepting the null hypothesis, you fail to 
reject it.   

 
Returning to Table 6, the two ways to be right are (1) to fail to reject the null hypothesis (H0) when 

it is true or (2) to reject the null hypothesis when it is false.  The two ways to be wrong are (1) to reject the 
null hypothesis when it is true (Type I error) or (2) to fail to reject the null hypothesis when it is false (Type 
II error).   

 
Table 7 shows the relationship between these concepts and their corresponding statistical testing 

terms: 
 

Table 7. Statistical testing terms 
Statistical Concept Testing Term 
Acceptable probability of a Type I error Alpha 
Acceptable probability of a Type II error Beta 
Confidence 1-alpha 
Power 1-beta 
 

 
The formula presented in Example 6 for an initial sample size estimate was: 

[5] n = (2*Z2*S2)/d2 
 
In Example 6, the Z-score was set for 90% confidence (which means alpha = .10).  To take power 

into account in this formula, you need to add another Z-score to the formula – the Z-score associated with 
the desired power of the test (as defined in Table 7).  Thus, the formula becomes:  

 
[6] n = (2*(Zα+ Zβ)2*S2)/d2 
 
So, what was the value for power in Example 6?  When beta equals .5 (in other words, when the 

power is 50%), the value of zβ is 0, so zβ disappears from the formula.  Thus, in Example 6, the implicit power 
was 50%.  Suppose you want to increase the power of the test to 80%, reducing beta to .2.   

 
• Estimate of variability from a previous evaluation = 5.0 
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• Critical difference (d) = 2% 
• Desired level of confidence: 90% (Zα=1.645) 
• Desired power: 80% (Zβ=1.282) 
 

With this change, the iterations converge on a sample size of 24 participants per group, for a total 
sample size of 48, as shown in Table 8.  To achieve the stated goal for power results in a considerably larger 
sample size. 

 
Table 8.  Full set of iterations for Example 7 

 Initial 1 2 3 
t(alpha) 1.645 1.721 1.714 1.717 
t(beta) 1.282 1.323 1.319 1.321 
t(total) 2.927 3.044 3.033 3.038 
t(total)2 8.567 9.266 9.199 9.229 
S2 5 5 5 5 
d 2 2 2 2 
d2 4 4 4 4 

     
Estimated n 21.418 23.165 22.998 23.074 
Rounded up 22 24 23 24 
df 21 23 22 23 
 

 
Note that the stated power of a test is relative to the critical difference – the smallest effect worth 

finding.  Either increasing the value of the critical difference or reducing the power of a test will result in a 
smaller required sample size. 

 
Appropriate statistical criteria for industrial testing.  In scientific publishing, the usual criterion 

for statistical significance is to set the permissible Type I error (alpha) equal to 0.05.  This is equivalent to 
seeking to have 95% confidence that the effect is real rather than random, and is focused on controlling the 
Type I error (the likelihood that you decide that an effect is real when it’s random).  There is no 
corresponding scientific recommendation for the Type II error (beta, the likelihood that you will conclude an 
effect is random when it’s real), although some suggest setting it to .20 (Diamond, 1981).  The rationale 
behind the emphasis on controlling the Type I error is that it is better to delay the introduction of good 
information into the scientific database (a Type II error) than to let erroneous information in (a Type I error). 

 
In industrial evaluation, the appropriate values for Type I and Type II errors depend on the 

demands of the situation – whether the cost of a Type I or Type II error would be more damaging to the 
organization.  Because we are often resource-constrained, especially with regard to making timely decisions 
to compete in dynamic marketplaces, this paper has used measurement criteria (such as 90% confidence 
rather than 95% confidence and fairly large values for d) that seek a greater balance between Type I and 
Type II errors than is typical in work designed to result in scientific publications.  Nielsen (1997) has 
suggested that 80% confidence is appropriate for practical development purposes.  For an excellent 
discussion of this topic for usability researchers, see Wickens (1998).  For other technical issues and 
perspectives, see Landauer (1997). 

 
Another way to look at the issue is to ask the question, “Am I typically interested in small high-

variability effects or large low-variability effects?”  The correct answer depends on the situation, but in 
usability testing, the emphasis is on the detection of large low-variability effects (either large performance 
effects or frequently-occurring problems).  You shouldn’t need a large sample to verify the existence of large 
low-variability effects.  Some writers equate sample size with population coverage, but this isn’t true.  A 
small sample size drawn from the right population provides better coverage than a large sample size drawn 
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from the wrong population.  The statistics involved in computing confidence intervals from small samples 
compensate for the potentially smaller variance in the small sample by forcing the confidence interval to be 
wider than that for a larger sample (specifically, the value of t is greater when samples are smaller). 

 
Coming from a different tradition than usability research, many market research texts provide rules 

of thumb recommending large sample sizes.  For example, Aaker and Day (1986) recommend a minimum of 
100 per group, with 20-50 for subgroups.  For national surveys with many subgroup analyses, the typical 
total sample size is 2500 (Sudman, 1976).  These rules of thumb do not make any formal contact with 
statistical theory, and may in fact be excessive, depending on the goals of the study.  Other market 
researchers (for example, Banks, 1965) do promote a careful evaluation of the goals of a study.   

 
It is urged that instead of a policy of setting uniform requirements for 
type I and II errors, regardless of the economic consequences of the 
various decisions to be made from experimental data, a much more 
flexible approach be adopted.  After all, if a researcher sets himself a 
policy of always choosing the apparently most effective of a group of 
alternative treatments on the basis of data from unbiased surveys or 
experiments and pursues this policy consistently, he will find that in the 
long run he will be better off than if he chose any other policy.  This fact 
would hold even if none of the differences involved were statistically 
significant according to our usual standards or even at probability 
levels of 20 or 30 percent.  (Banks, 1965, p. 252) 

 
Finally, Alreck and Settle (1985) provide an excellent summary of the factors indicating appropriate 

use of large and small samples.   
 
Use a large sample size when: 
 

1. Decisions based on the data will have very serious or costly consequences 
2. The sponsors (decision-makers) demand a high level of confidence 
3. The important measures have high variance 
4. Analyses will require the dividing of the total sample into small subsamples 
5. Increasing the sample size has a negligible effect on the cost and timing of the study 
6. Time and resources are available to cover the cost of data collection 

 
Use a small sample size when:  
 

1. The data will determine few major commitments or decisions  
2. The sponsors (decision-makers) require only rough estimates  
3. The important measures have low variance 
4. Analyses will use the entire sample, or just a few relatively large subsamples 
5. Costs increase dramatically with sample size 
6. Budget constraints or time limitations limit the amount of data you can collect 

 
 Some tips on reducing variance.  Because measurement variance is such an important factor in sample 

size estimation for these types of studies, it generally makes sense to attempt to manage variance (although 
in some situations, such management is out of a practitioner’s control).  Here are some ways to reduce 
variance: 

 
• Make sure participants understand what they are supposed to do in the study.  Unless potential 

participant confusion is part of the evaluation (and it sometimes is), it can only add to measurement 
variance.   
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• One way to accomplish this is through practice trials that allow participants to get used to the 
experimental situation without unduly revealing study-relevant information. 

• If appropriate, use expert rather than novice participants.  Almost by definition, expertise implies 
reduced performance variability (increased automaticity) (Mayer, 1997).  With regard to reducing 
variance, the farther up the learning curve, the better.   

• A corollary of this is that if you need to include both expert and novice users, you should be able to get 
equal measurement precision for both groups with unequal sample sizes (fewer experts required than 
novices – which is good, because experts are typically harder than novices to recruit as participants). 

• If appropriate, study simple rather than complex tasks.   
• Use data transformations for measurements that typically exhibit correlations between means and 

variances or standard deviations.  For example, frequency counts often have proportional means and 
variances (treated with the square root transformation), and time scores often have proportional means 
and standard deviations (treated with the logarithmic transformation) (Myers, 1979).   

• For comparative studies, use within-subjects designs rather than between-subjects designs whenever 
possible. 

• Keep user groups as homogeneous as possible (but although this reduces variability, it can 
simultaneously pose a threat to a study’s external validity if the test group is more homogenous than 
the population under study) (Campbell and Stanley, 1963).  

 
Keep in mind that it is reasonable to use these tips only when their use does not adversely affect 

the validity and generalizability of the study.  Having a valid and generalizable study is far more important 
than reducing variability.   

 
Some tips for estimating unknown variance.  Parasuraman (1986) described a method for 

estimating variability if you have an idea about the largest and smallest values for a population of 
measurements, but don’t have the information you need to actually calculate the variability.  Estimate the 
standard deviation (the square root of the variability) by dividing the difference between the largest and 
smallest values by 6.  This technique assumes that the population distribution is normal, and then takes 
advantage of the fact that 99% of a normal distribution will lie in the range of plus or minus three standard 
deviations of the mean. 

 
 Nielsen (1997) surveyed 36 published usability studies, and found that the mean standard 
deviation for measures of expert performance was 33% of the mean value of the usability measure (in other 
words, if the mean completion time was 100 seconds, then the mean standard deviation was about 33 
seconds).  For novice-user learning the mean standard deviation was 46%, and for measures of error rates 
the value was 59%. 
 

Churchill (1991) provided a list of typical variances for data obtained from rating scales.  Because 
the number of items in the scale affects the possible variance (with more items leading to more variance), the 
table takes the number of items into account.  For five-point scales, the typical variance is 1.2-2.0; for seven-
point scales it is 2.4-4.0; and for ten-point scales it is 3.0-7.0.  Because data obtained using rating scales 
tends to have a more uniform than normal distribution, he advises using a number nearer the high end of the 
listed range when estimating sample sizes. 

 
Measurement theorists who agree with S. S. Steven’s (1951) principle of invariance might yell ‘foul’ 

at this point because they believe it is not permissible to calculate averages or variances from rating scale 
data.  There is considerable controversy on this point (for example, see Lord, 1953, Nunnally, 1976, or Harris, 
1985).  Data reported by Lewis (1993) indicate that taking averages and conducting t-tests on multipoint 
rating data provides far more interpretable and consistent results than the alternative of taking medians and 
conducting Mann-Whitney U-tests.  You do have to be careful not to act as if rating scale data are interval 
data rather than ordinal data when you make claims about the meaning of the outcomes of your statistical 
tests.  An average rating of 4 might be better than an average rating of 2, but you can’t claim that it is twice 
as good (a ratio claim), nor can you claim that the difference between 4 and 2 is equal to the difference 
between 4 and 6 (an interval claim). 
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Sample Size Estimation for Problem-Discovery (Formative) Studies   

 “Having collected data from a few test subjects – and initially a few are all you need – you are 
ready for a revision of the text.” (Al-Awar et al., 1981, p. 34) 

 
 “This research does not mean that all of the possible problems with a product appear with 5 or 10 
participants, but most of the problems that are going to show up with one sample of tasks and one group of 
participants will occur early.” (Dumas, 2003, p. 1098) 
 

While these types of general guidelines have been helpful, it is possible to use more precise 
methods to estimate sample size requirements for problem-discovery usability tests.  Estimating sample sizes 
for tests that have the primary purpose of discovering the problems in an interface depends on having an 
estimate of p, characterized as the average likelihood of problem occurrence or, alternatively, the problem 
discovery rate.  As with comparative studies, this estimate can come from previous studies using the same 
method and similar system under evaluation, or can come from a pilot study.  For standard scenario-based 
usability studies, the literature contains large-sample examples that show p ranging from .16 to .42 (Lewis, 
1994).  For heuristic evaluations, the reported value of p from large-sample studies ranges from .22 to .60 
(Nielsen and Molich, 1990).   

 
When estimating p from a small sample, it is important to adjust its initially estimated value because 

a small-sample estimate of p (for example, fewer than 20 participants) has a bias that results in potentially 
substantial overestimation of its value (Hertzum and Jacobsen, 2003).  A series of Monte Carlo experiments 
(Lewis, 2001a) have demonstrated that a formula combining Good-Turing discounting with a normalization 
procedure provides a reasonably accurate adjustment of initial estimates of p (pest), even when the sample 
size for that initial estimate has as few as two participants (preferably four participants, though, because the 
variability of estimates of p is greater for smaller samples, Faulkner, 2003; Lewis, 2001a).  This formula for the 
adjustment of p is: 

 
 [7] padj = ½[(pest – 1/n)(1 – 1/n)] + ½[ pest /(1+GTadj)] 
 
where GTadj is the Good-Turing adjustment to probability space (which is the proportion of the number of 
problems that occurred once divided by the total number of different problems). The pest/(1+ GTadj) 
component in the equation produces the Good-Turing adjusted estimate of p by dividing the observed, 
unadjusted estimate of p (pest) by the Good-Turing adjustment to probability space. The (pest – 1/n)(1 – 1/n) 
component in the equation produces the normalized estimate of p from the observed, unadjusted estimate of 
p and n (the sample size used to estimate p).  The reason for averaging these two different estimates is that 
the Good-Turing estimator tends to overestimate the true value of p, and the normalization tends to 
underestimate it.  For more details and experimental data supporting the use of this formula for estimates of p 
based on sample sizes from two to ten participants, see Lewis (2001a).   
 

Adjusting the initial estimate of p .  Because this is a new procedure, this section contains a 
detailed illustration of the steps used to adjust an initial estimate of p.  To start with, organize the problem 
discovery data in a table (for example, Table 9) that shows which participants experienced which problems. 
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Table 9. Hypothetical results for a problem-discovery usability study 

Participant Prob 
1 

Prob 
2 

Prob 
3 

Prob 
4 

Prob 
5 

Prob 
6 

Prob 
7 

Prob 
8 
 

Count Proportion 

1 x  x  x  x x 5 0.63 

2 x x   x  x  4 0.50 

3 x  x x x    4 0.50 

4 x x    x   3 0.38 

           

Count 4 2 2 1 3 1 2 1 16  

Proportion 1.00 0.50 0.50 0.25 0.75 0.25 0.50 0.25  0.50 

 

 
With four participants and eight observed problems, there are 32 cells in the table.  The total 

number of problem occurrences is 16, so the initial estimate of p (pest) is .50 (16/32).  Note that averaging the 
proportion of problem occurrence across participants or across problems also equals .50.   

 
To apply the Good-Turing adjustment, count the number of problems that occurred with only one 

participant.  In Table 9, this happened for three problems (Problems 4, 6, and 8) out of the eight unique 
problems listed in the table.  Thus, the value of GTadj is .375 (3/8), and the value of pest/(1+ GTadj) is .36 
(.5/1.375).   

 
To apply the normalization adjustment, start by computing 1/n, which in Table 9 is .25 (1/4).  The 

value of (pest – 1/n)(1 – 1/n) is .19 (.25*.75). 
 
The average of the two adjustments produces padj, which in this example equals .28 ((.36+.19)/2).  In 

this example, the adjusted estimate of p is almost half of the initial estimate. 
 
Using the adjusted estimate of p .  Once you have an appropriate (adjusted) estimate for p, you can 

use the formula 1-(1-p)n (derivable both from the binomial probability formula, Lewis, 1982, 1994, and from the 
Poisson probability formula, Nielsen and Landauer, 1993) for various values of n from, say, 1 to 20, to 
generate the curve of diminishing returns expected as a function of sample size.  It is possible to get even 
more sophisticated, taking into account the fixed and variable costs of the evaluation (especially the variable 
costs associated with the study of additional participants) to estimate when running an additional 
participant will result in costs that exceed the value of the additional problems discovered (Lewis, 1994).   

 
The Monte Carlo experiments reported in Lewis (2001a) demonstrated that an effective strategy for 

planning the sample size for a usability study is first to establish a problem discovery goal (for example, 90% 
or 95%).  Run the first two participants and, based on those results, calculate the adjusted value of p using 
the equation in [7].   This provides an early indication of the likely required sample size, which might 
estimate the final sample size exactly or, more likely, underestimate by one or two participants (but will 
provide an early estimate of the required sample size).  Collect data from two more participants (for a total of 
four).  Recalculate the adjusted estimate of p using the equation in [7] and project the required sample size 
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using 1-(1-p)n.  The estimated sample size requirement based on data from four participants will generally be 
highly accurate, allowing accurate planning for the remainder of the study.  Practitioners should do this 
even if they have calculated a preliminary estimate of the required sample size from an adjusted value for p 
obtained from a previous study. 

 
Figure 4 shows the predicted discovery rates for problems of differing likelihoods of observation 

during a usability study.  Several independent studies have verified that these types of predictions fit 
observed data very closely for both usability and heuristic evaluations (Lewis, 1994; Niels en and Landauer, 
1993; Nielsen and Molich, 1990; Virzi, 1990, 1992; Wright and Monk, 1991).  Furthermore, the predictions 
work both for predicting the discovery of individual problems with a given probability of detection and for 
modeling the discovery of members of sets of problems with a given mean probability of detection (Lewis, 
1994).  For usability studies, the sample size is the number of participants.  For heuristic evaluations, the 
sample size is the number of evaluators. 
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Figure 4. Predicted discovery as a function of problem likelihood 

 
Table 10 (based on a table originally published in Lewis, 1994, but with updated computations to 

reduce the effect of round-off error) shows problem detection sample size requirements as a function of 
problem detection probability and the cumulative likelihood of detecting the problem at least once during 
the study.  The required sample size for detecting the problem twice during a study appears in parentheses. 
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Table 10.  Sample size requirements for problem discovery (formative) studies 
 

Problem 
Occurrence 
Probability 

Cumulative Likelihood of Detecting the Problem at Least Once (Twice) 

 0.50 0.75 0.85 0.90 0.95 0.99 
0.01 69 (168) 138 (269) 189 (337) 230 (388) 299 (473) 459 (662) 
0.05 14 (34) 28 (53) 37 (67) 45 (77) 59 (93) 90 (130) 
0.10 7 (17) 14 (27) 19 (33) 22 (38) 29 (46) 44 (64) 
0.15 5 (11) 9 (18) 12 (22) 15 (25) 19 (30) 29 (42) 
0.25 3 (7) 5 (10) 7 (13) 9 (15) 11 (18) 17 (24) 
0.50 1 (3) 2 (5) 3 (6) 4 (7) 5 (8) 7 (11) 
0.90 1 (2) 1 (2) 1 (3) 1 (3) 2 (3) 2 (4) 

 

 
To use this information to establish a usability sample size, you need to determine three things.   
 
First, what is the average likelihood of problem detection probability (p)?  This plays a role similar 

to the role of variance in the previous exa mples.  If you don’t know this value (from previous studies or a 
pilot study), then you need to decide on the lowest problem detection probability that you want to (or have 
the resources to) tackle.  The smaller this number, the larger is the required samp le size. 

 
Second, you need to determine what proportion of the problems that exist at that level you need (or 

have the resources) to discover during the study (in other words, the cumulative likelihood of problem 
detection).  The larger this number, the larger the required sample size. 

 
Finally, you need to decide whether you are willing to take single occurrences of problems 

seriously or if problems must appear at least twice before receiving consideration.  Requiring two 
occurrences results in a larger sample size. 

 
 For values of p or problem-discovery goals that are outside of tabled values, you can use the 
formula in [8] (derived algebraically from Goal=1-(1-p)n) to directly compute the sample size required for a 
given problem discovery goal (taking single occurrences of problems seriously) and value of p. 
 
  [8] n = log(1 - Goal)/log(1 - p) 
 
 In the example from Table 9, the adjusted value of p was .28.  Suppose the practitioner decided that 
the appropriate problem-discovery goal was to find 97% of the discoverable problems.  The computed value 
of n is 10.6 (log(.03)/log(.72), or -1.522/-.143).  The practitioner can either round the sample size up to 11 or 
adjust the problem-discovery goal down to 96.3% (1-(1-.28)10).   
 
 Lewis (1994) created a return-on-investment (ROI) model to investigate appropriate cumulative 
problem detection goals.  It turned out that the appropriate goal depended on the average problem detection 
probability in the evaluation – the same value that has a key role in determining the sample size.  The model 
indicated that if the expected value of p was small (say, around 0.10), practitioners should plan to discover 
about 86% of the problems.  If the expected value of p was larger (say, around .25 or .50), practitioners 
should plan to discover about 98% of the problems.  For expected values of p between 0.10 and 0.25, 
practitioners should interpolate between 87 and 97% to determine an appropriate goal for the percentage of 
problems to discover. 
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 The cost of an undiscovered problem had a strong effect on the magnitude of the maximum ROI, 
but contrary to expectation, it had a minor effect on sample size at maximum ROI (Lewis, 1994).  Usability 
practitioners should be aware of these costs in their settings and their effect on ROI (Boehm, 1981), but 
these costs have relatively little effect on the appropriate sample size for a usability study. 
 
 In summary, there is compelling evidence that the law of diminishing returns, based on the 
cumulative binomial probability formula, applies to problem discovery studies.  To use this formula to 
determine an appropriate sample size, practitioners must form an idea about the expected value of p (the 
average likelihood of problem detection) for the study and the percentage of problems that the study should 
uncover.  Practitioners can use the ROI model from Lewis (1994) or their own ROI formulas to estimate an 
appropriate goal for the percentage of problems to discover and can examine data from their own or 
published usability studies to get an initial estimate of p (which published studies to date indicate can range 
at least from 0.16 to 0.60).  With these two estimates, practitioners can use Table 10 (or, for computations 
outside of tabled values, the appropriate equations) to estimate appropriate sample sizes for their usability 
studies. 
 
 It is interesting to speculate that a new product that has not yet undergone any usability 
evaluation is likely to have a higher p than an established product that has gone through several 
development iterations (including usability testing).  This suggests that it is easier (takes fewer participants) 
to improve a completely new product than to improve an existing product (as long as that existing product 
has benefited from previous usability evaluation).  This is related to the idea that usability testing is a hill-
climbing procedure, in which the results of a usability test are applied to a product to push its usability up 
the hill.  The higher up the hill you go, the more difficult it becomes to go higher, because you have already 
weeded out the problems that were easy to find and fix.  
 
 Practitioners who wait to see a problem at least twice before giving it serious consideration can see 
from Table 10 the sample size implications of this strategy.  Certainly, all other things being equal, it is more 
important to correct a problem that occurs frequently than one that occurs infrequently.  However, it is 
unrealistic to assume that the frequency of detection of a problem is the only criterion to consider in the 
analysis of usability problems.  The best strategy is to consider problem frequency and other problem data 
(such as severity and likelihood of use) simultaneously to determine which problems are most important to 
correct rather than establishing a cutoff rule such as “fix every problem that appears two or more times.” 
 
 Note that in contrast to the results reported by Virzi (1992), the results reported by Lewis (1994) did 
not indicate any consistent relationship between problem frequency and impact (severity).  It is possible 
that this difference was due to the different methods used to assess severity (judgment-driven in Virzi, 1992; 
data-driven in Lewis, 1994).  Thus, the safest strategy is for practitioners to assume independence of 
frequency and impact until further research resolves the discrepancy between the outcomes of these 
studies. 
 
 It is important for practitioners to consider the risks as well as the gains when using small samples 
for usability studies.  Although the diminishing returns for inclusion of additional participants strongly 
suggest that the most efficient approach is to run a small sample (especially if p is high, if the study will be 
iterative, and if undiscovered problems will not have dangerous or expensive outcomes), human factors 
engineers and other usability practitioners must not become complacent regarding the risk of failing to 
detect low-frequency but important problems.  
 
 One could argue that the true number of possible usability problems in any interface is essentially 
infinite, with an essentially infinite number of problems with non-zero probabilities that are extremely close 
to zero.  For the purposes of determining sample size, the p we are really dealing with is the p that represents 
the number of discovered problems divided by the number of discoverable problems, where the definition of 
a discoverable problem is vague, but almost certainly constrained by details of the experimental setting, 
such as the studied scenarios and tasks and the skill of the observer(s).  Despite this vagueness and some 
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recent criticism of the use of p to model problem-discovery (Caulton, 2001; Woolrych and Cockton, 2001), 
these techniques seem to work reasonably well in practice (Turner et al., in press). 
 

Examples of sample size estimation for problem-discovery (formative) studies.  This section 
contains several examples illustrating the use of Table 10 as an aid in selecting an appropriate sample size 
for a problem-discovery study.   

 
A. Given the following problem discovery criteria: 
 

• Detect problems with average probability of: 0.25 
• Minimum number of detections required: 1 
• Planned proportion to discover: 0.90 
 
The appropriate sample size is 9 participants. 
 

B. Given the same discovery criteria, except the practitioner requires problems to be detected twice 
before receiving serious attention: 

 
• Detect problems with average probability of: 0.25 
• Minimum number of detections required: 2 
• Planned proportion to discover: 0.90 
 
The appropriate sample size would be 15 participants. 
 

C. Returning to requiring a single detection, but increasing the planned proportion to discover to .99: 
 

• Detect problems with average probability of: 0.25 
• Minimum number of detections required: 1 
• Planned proportion to discover: 0.99 
 
The appropriate sample size would be 17 participants. 
 

D. Given the following extremely stringent discovery criteria: 
 

• Detect problems with average probability of: 0.01 
• Minimum number of detections required: 1 
• Planned proportion to discover: 0.99 
 
The required sample size would be 459 participants (an unrealistic requirement in most settings, implying 
unrealistic study goals). 
 

Note that there is no requirement to run the entire planned sample through the usability study before 
reporting clear problems to development and getting those problems fixed before continuing.  These 
required sample sizes are total sample sizes, not sample sizes per iteration.  The following testing strategy 
promotes efficient iterative problem discovery studies and is similar to strategies published by a number of 
usability specialists (Bailey et al., 1992; Fu et al., 2002; Kantner and Rosenbaum, 1997; Jeffries and 
Desurvire, 1992; Macleod et al., 1997; Nielsen, 1993; Rosenbaum, 1989). 

 
1. Start with an expert (heuristic) evaluation or one-participant pilot study to uncover the obvious 

problems.  Correct as many of these problems as possible before starting the iterative cycles with Step 
2.  List all unresolved problems and carry them to Step 2. 

2. Watch a small sample of participants (for example, three or four) use the system.  Record all observed 
usability problems.  Calculate an adjusted estimate of p based on these results and re-estimate the 
required sample size. 
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3. Redesign based on the problems discovered.  Focus on fixing high frequency and high impact 
problems.  Fix as many of the remaining problems as possible.  Record any outstanding problems so 
they can remain open for all following iterations. 

4. Continue iterating until you have reached your sample size goal (or must stop for any other reason, 
such as you ran out of time). 

5. Record any outstanding problems remaining at the end of testing and carry them over to the next 
product for which they are applicable.   

 
 This strategy blends the benefits of large and small sample studies.  During each iteration, you 
observe only three participants before redesigning the system.  Therefore, you can quickly identify and 
correct the most frequent problems (which means you waste less time watching the next set of participants 
encounter problems that you already know about).  With five iterations, for example, the total sample size 
would be 15 participants.  With several iterations you will identify and correct many less frequent problems 
because you record and track the uncorrected problems through all iterations.   
 
 Note that using this sort of iterative procedure affects estimates of p as you go along.  The value of 
p in the system you end with should generally be lower than the p you started with (as long as the process 
of fixing problems doesn’t create as many other problems).  For this reason, it’s a good idea to recompute 
the adjusted value of p after each iteration. 
 

Evaluating sample size effectiveness given fixed n .  Suppose you know you only have time to run a 
limited number of participants, are willing to treat a single occurrence of a problem seriously, and want to 
determine what you can expect to get out of a problem-discovery study with that number of participants.  If 
that number were six, for example, examination of Table 10 indicates: 

 
• You are almost certain to detect problems that have a .90 likelihood of occurrence (it only takes two 

participants to have a 99% cumulative likelihood of seeing the problem at least once). 
• You are almost certain (between 95 and 99% likely) to detect problems that have a .50 likelihood of 

occurrence (for this likelihood of occurrence, the required sample size at 95% is 5, and at 99% is 7). 
• You’ve got a reasonable chance (about 80% likely) of detecting problems that have a .25 likelihood of 

occurrence (for this likelihood of occurrence, the required sample size at 75% is 5,and at 85% is 7). 
• You have a little better than even odds of detecting problems that have a .15 likelihood of occurrence 

(the required sample size at 50% is 5). 
• You have a little less than even odds of detecting problems that have a .10 likelihood of occurrence (the 

required sample size at 50% is 7). 
• You are not likely to detect many of the problems that have a likelihood of occurrence of .05 or .01 (for 

these likelihoods of occurrence, the required sample size at 50% is 14 and 69 respectively). 
 

This analysis illustrates that although a problem-discovery study with a sample size of six participants 
will typically not discover problems with very low likelihoods of occurrence, the study is almost certainly 
worth conducting.   

 
Applying this procedure to a number of different sample sizes produces Table 11.  The cells in Table 11 

are the probability of having a problem with a specified occurrence probability happen at least once during a 
usability study with the given sample size.   
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Table 11. Likelihood of discovering problems of probability p at least once in a study with sample size n  
Problem 

Occurrence 
Probability (p) 

Sample Size (n) 

 3 6 9 12 15 18 21 

.01 0.03 0.06 0.09 0.11 0.14 0.17 0.19 

.05 0.14 0.26 0.37 0.46 0.54 0.60 0.66 

.10 0.27 0.47 0.61 0.72 0.79 0.85 0.89 

.15 0.39 0.62 0.77 0.86 0.91 0.95 0.97 

.25 0.58 0.82 0.92 0.97 0.99 0.99 1.00 

.50 0.88 0.98 1.00 1.00 1.00 1.00 1.00 

.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
 

 
Estimating the number of problems available for discovery.  Another approach to assessing 

sample size effectiveness is to estimate the number of undiscovered problems.  Returning to the situation 
illustrated in Table 9, the adjusted estimate of p is .28 with four participants and eight unique problems.  The 
estimated proportion of problems discovered with those four participants is .73 (1-(1-.28)4).  If eight problems 
are about 73% of the total number of problems available for discovery, then the total number of problems 
available for discovery (given the constraints of the testing situation) is about 11 (8/.73).  Thus, there appear 
to be about three undiscovered problems.  With an estimate of only three undiscovered problems, the 
sample size of four is approaching adequacy. 

 
Contrast this with the MACERR study described in Lewis (2001a) that had an estimated value of p 

of .16 with fifteen participants and 145 unique problems.  For this study, the estimated proportion of 
discovered problems at the end of the test was .927 (1-(1-.16)15).  The estimate of the total number of 
problems available for discovery was about 156 (145/.927).  With about 11 problems remaining available for 
discovery, it might be wise to run a few more participants.   

 
On the other hand, with an estimated 92.7% of problems available for discovery extracted from the 

problem discovery space defined by the test conditions, it might make more sense to make changes to the 
test conditions (in particular, to make reasonable changes to the tasks) to create additional opportunities for 
problem discovery.  This is one of many areas in which practitioners need to exercise professional judgment, 
using the available tables and formulas to guide that judgment. 

 
Some tips on managing p .  Because p (the average likelihood of problem discovery) is such an 

important factor in sample size estimation for usability tests, it generally makes sense to attempt to manage it 
(although in some situations, such management is out of a practitioner’s control).  Here are some ways to 
increase p: 

 
• Use highly-skilled observers for usability studies.   
• Use multiple observers rather than a single observer (Hertzum and Jacobsen, 2003). 
• Focus evaluation on new products with newly-designed interfaces rather than older, more refined 

interfaces. 
• Study less-skilled participants in usability studies (as long as they are appropriate participants). 
• Make the user sample as heterogeneous as possible, within the bounds of the population to which you 

plan to generalize the results.   
• Make the task sample as heterogeneous as possible.   
• Emphasize complex rather than simp le tasks. 
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• For heuristic evaluations, use examiners with usability and application domain expertise (double experts, 
Nielsen, 1992). 

• For heuristic evaluations, if you must make a tradeoff between having a single evaluator spend a lot of 
time examining an interface versus having more examiners spend less time each examining an interface, 
choose the latter option (Dumas, Sorce, and Virzi, 1995; Virzi, 1997).   
 
Note that some of the tips for increasing p are the opposite of those that reduce measurement 

variability.   
 

Sample Sizes for Non-Traditional Areas of Usability Evaluation 
Non-traditional areas of usability evaluation include activities such as the evaluation of visual 

design and marketing materials.  As with traditional areas of evaluation, the first step is to determine if the 
evaluation is comparative/parameter estimation or problem-discovery.   

 
Part of the problem with non-traditional areas is that there is less information regarding the values 

of the variables needed to estimate sample sizes.  Another issue is whether these areas are inherently 
focused on detecting more subtle effects than is the norm in usability testing, which has a focus on large 
low-variability effects (and correspondingly small sample size requirements).  Determining this requires the 
involvement of someone with domain expertise in these non-traditional areas.  It seems, however, that even 
these non-traditional areas would benefit from focusing on the discovery of large low-variability effects.  
Only if there was a business case that the investment in a study to detect small, highly-variable effects 
would ultimately pay for itself should you conduct such a study. 

 
For example, in The Survey Research Handbook , Alreck and Settle (1985) point out that the reason 

that survey samples rarely contain fewer than several hundred respondents is due to the cost structure of 
surveys.  The fixed costs of the survey include activities such as determining information requirements, 
identifying survey topics, selecting a data collection method, writing questions, choosing scales, 
composing the questionnaire, etc.  For this type of research, the additional or ‘marginal’ cost of including 
hundreds of additional respondents can be very small relative to the fixed costs.  Contrast this with the cost 
(or feasibility) of adding participants to a usability study in which there might be as little as a week or two 
between the availability of testable software and the deadline for affecting the product, with resources 
limiting the observation of participants to one at a time and the test scenarios requiring two days to 
complete.  The potentially high cost of observing participants in usability tests is one reason why usability 
researchers have devoted considerable attention to sample size estimation, despite some assertions that 
sample size estimation is relatively unimportant (Wixon, 2003). 

 
“Since the numbers don’t know where they came from, they always behave just the same way, 

regardless.” (Lord, 1953, p. 751)  What potentially differs for non-traditional areas of usability evaluation 
isn’t the behavior of numbers or statistical procedures, but the researchers’ goals and economic realities. 

 
Confidence Intervals 

A major trend in modern statistical evaluation has been a reduced focus on hypothesis testing and 
a move toward more informative analyses such as effect sizes and confidence intervals (Landauer, 1997).  
For most applied usability work, confidence intervals are more useful than effect sizes because they have 
the same units of measurement as the variables from which they are computed.  Even when confidence 
intervals are very wide, they can still be informative, so practitioners should routinely report confidence 
intervals for their measurements.  Although 95% confidence is a commonly used level, confidence as low as 
80% will often be appropriate for applied usability measurements (Nielsen, 1997).   
 
Intervals Based on t-Scores   

The formulas for the computation of confidence intervals based on t-scores are algebraically 
equivalent to those used to estimate required sample sizes for measurement-based usability tests, but isolate 
the critical difference (d) instead of the sample size (n), as shown in [9]. 
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 [9] d = sem * tcrit  
 

where sem is the standard error of the mean (the standard deviation, S, divided by the square root of the 
sample size, n) and tcrit is the t-value associated with the desired level of confidence (found in a t-table, 
available in most statistics texts).  (Practitioners who are concerned about departures from normality can 
perform a logarithmic transformation on their raw data before computing the confidence interval, then 
transform the data back to report the mean and confidence interval limits.) 
 
 For example, suppose that a task in a usability test with seven participants has an average 
completion time of 5.4 minutes with a standard deviation of 2.2 minutes.  The sem is .83 (2.2/(71/2)).  For 90% 
confidence and 6 (n - 1) degrees of freedom, the tabled value of t is 1.943.  The computed value of d is 1.6 
(.83 * 1.943), so the 90% confidence interval is 5.4 ± 1.6 minutes.   
 
 As a second example, suppose that the results of a within-subjects test of the time required for two 
installation procedures showed that the mean of the difference scores (Version A minus Version B) was 2 
minutes with a standard deviation of 2 minutes for a sample size of 8 participants.  The sem is .71 (2/(81/2)).  
For 95% confidence and 7 (n - 1) degrees of freedom, the tabled value of t is 2.365.  The computed value of d 
is 1.7 (.71 * 2.365), so the 95% confidence interval is 2.0 ± 1.7 minutes (ranging from 0.3 to 3.7 minutes).  
Because the confidence interval does not contain 0, this interval indicates that with alpha of .05 (where 
alpha is 1 minus the confidence expressed as a proportion rather than a percentage) you should reject the 
null hypothesis of no difference.  The evidence indicates that Version A takes longer than Version B.  The 
major advantage of a confidence interval over a significance test is that you also know with 95% confidence 
that the magnitude of the difference is probably no less then 0.3 minutes and no greater than 3.7 minutes.  If 
the versions are otherwise equal, then Version B is the clear winner.  If the cost of Version B is greater than 
the cost of Version A (for example, due to a need to license a new technology for Version B), then the 
decision about which version to implement is more difficult, but is certainly aided by having an estimate of 
the upper and lower limits of the difference between the two versions. 
 
Binomial Confidence Intervals   
 As discussed above, confidence intervals constructed around a mean can be very useful.  Many 
usability measurements, however, are proportions or percentages computed from count data rather than 
means.  For example, a usability defect rate for a specific problem is the proportion computed by dividing the 
number of participants who experience the problem divided by the total number of participants.   
 

The statistical term for a study designed to estimate proportions is a binomial experiment, because 
a given problem either will or will not occur for each trial (participant) in the experiment.  For example, a 
participant either will or will not install an option correctly.  The point estimate of the defect rate is the 
observed proportion of failures (p).  However, the likelihood is very small that the point estimate from a 
study is exactly the same as the true percentage of failures, especially if the sample size is small (Walpole, 
1976).  To compensate for this, you can calculate interval estimates that have a known likelihood of 
containing the true proportion (Steele and Torrie, 1960).  You can use these binomial confidence intervals to 
describe the proportion of usability defects effectively, often with only a small sample (Lewis, 1996a).  
Cordes and Lentz (1986) and Lewis (1996a) provided BASIC programs for the computation of binomial 
confidence intervals.  There are similar programs available at the website of the Southwest Oncology Group 
Statistical Center (SOGSC, 2004 – http://www.swogstat.org/stat/public/binomial_conf.htm), the GraphPad 
website (GraphPad, 2004 – http://graphpad.com/quickcalcs/ConfInterval1.cfm), and the Measuring Usability 
website (Sauro, 2004 – http://www.measuringusability.com/conf_intervals.htm).   

 
Some programs (Cordes and Lentz, 1986; Lewis, 1996a; SOGSC, 2004) produce binomial confidence 

intervals that always contain the exact binomial confidence interval.  Other programs (GraphPad, 2004; 
Sauro, 2004) also produce a new type of interval called approximate binomial confidence intervals (Agresti 
and Coull, 1998).  Exact and approximate binomial confidence intervals differ in a number of ways.  An exact 
binomial confidence interval guarantees that the actual confidence is equal to or greater than the nominal 
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confidence.  An approximate interval guarantees that the average of the actual confidence in the long run 
will be equal to the nominal confidence, but for any specific test, the actual confidence could be lower than 
the nominal confidence.  On the other hand, approximate binomial confidence intervals tend to be narrower 
than exact intervals.  When sample sizes are large (n > 100), the two types of intervals are virtually 
indistinguishable.  When sample sizes are small, though, there can be a considerable difference in the width 
of the intervals , especially when the observed proportion is close to 0 or 1.  The exact interval often has an 
actual confidence closer to 99% when the nominal confidence is 95%, making it too conservative.   

 
Monte Carlo studies that have compared exact and approximate binomial confidence intervals 

using standard statistical distributions (Agresti and Coull, 1998) and data from usability studies (Sauro and 
Lewis, 2005) generally support the use of approximate rather than exact binomial confidence intervals .  
When the actual confidence of an approximate binomial confidence interval is below the nominal level, the 
actual level tends to be close to the nominal level (for example, Agresti and Coull, 1998, found that the actual 
level for 95% approximate binomial confidence intervals using the adjusted-Wald method was never less 
than 89%).  “In forming a 95% confidence interval, is it better to use an approach that guarantees that the 
actual coverage probabilities are at least .95 yet typically achieves coverage probabilities of about .98 or.99, 
or an approach giving narrower intervals for which the actual coverage probability could be less than .95 but 
is usually quite close to .95?  For most applications, we would prefer the latter” (Agresti and Coull, 1998, p. 
125).  This conclusion, that using approximate binomial confidence intervals will tend to produce superior 
decisions relative to the use of exact intervals, seems to apply to usability test data (Sauro and Lewis, 2005).  
If, however, it is critical for a specific test to achieve or exceed the nominal level of confidence, then it is 
reasonable to use an exact binomial confidence interval. 

 
When using binomial confidence intervals, note that if the failure rate is fairly high, you do not 

need a very large samp le to acquire convincing evidence of failure.  In the first evaluation of a wordless 
graphic instruction (Lewis and Pallo, 1991), 9 of 11 installations (82%) were incorrect.  The exact 90% 
binomial confidence interval for this outcome ranged from .53 to .97.  This interval allowed us to argue that 
without intervention, the failure rate for installation would be at least 53% (and more likely closer to the 
observed 82%). 

 
This suggests that a reasonable strategy for binomial experiments is to start with a small sample 

size and record the number of failures.  From these results, compute a confidence interval.  If the lower limit 
of the confidence interval indicates an unacceptably high failure rate, stop testing.  Otherwise, continue 
testing and evaluating in increments until you reach a specified level of precision or you reach the maximum 
sample size allowed for the study. 

 
This method can rapidly demonstrate with a small sample that a usability defect is unacceptably 

high if the criterion is low and the true defect rate is high.   Although the confidence interval will be wide (50 
percentage points in the graphic symbols example), the lower limit of the interval may be clearly 
unacceptable.  When the true defect rate is low or the criterion is high, this procedure may not work without 
a large sample size.  The decision to continue sampling or to stop the study should be determined by a 
reasonable business case that balances the cost of continued data collection against the potential cost of 
allowing defects to go uncorrected.   

 
You cannot use this procedure with small samples to prove that a success rate is acceptably high.  

With small samples, even if the observed defect percentage is 0 or close to 0%, the interval will be wide, so it 
will probably include defect percentages that are unacceptable.  For example, suppose you have run five 
participants through a task, and all five have completed the task successfully.  The 90% confidence interval 
on the percentage of defects for these results ranges from 0 to 45%, with a 45% defect rate almost certainly 
unacceptable.  If you had fifty out of fifty successful task completions, the 90% binomial confidence interval 
would range from 0 to 6%, which would indicate a greater likelihood of the true defect rate being close to 
0%.  The moral of the story is that it is relatively easy to prove (requires a small sample) that a product is 
unacceptable, but it is difficult to prove (requires a large sample) that a product is acceptable.   

 



 

 48  

Standardized Usability Questionnaires 

Standardized satisfaction measures offer many advantages to the usability practitioner.  
Specifically, standardized measurements provide objectivity, replicability, quantification, economy, 
communication, and scientific generalization (Nunnally, 1978).  The first published standardized usability 
questionnaires appeared in the late 1980s (Chin et al., 1988; Kirakowski and Dillon, 1988).  Questionnaires 
focused on the measurement of computer satisfaction preceded these questionnaires (for example, the 
Gallagher Value of MIS Reports Scale and the Hatcher and Diebert Computer Acceptance Scale – see 
LaLomia and Sidowski, 1990, for a review), but these questionnaires were not applicable to scenario-based 
usability tests.   

 
The most widely used standardized usability questionnaires are the Questionnaire for User 

Interaction Satisfaction (QUIS, Chin et al., 1988), the Software Usability Measurement Inventory (SUMI, 
Kirakowski, 1996; Kirakowski and Corbett, 1993), the Post-Study System Usability Questionnaire (PSSUQ, 
Lewis, 1992, 1995, 2002), and the Software Usability Scale (SUS, Brooke, 1996).  The most common 
application of these questionnaires is at the end of a test (after completing a series of test scenarios).  The 
After-Scenario Questionnaire (ASQ, Lewis, 1991b) is a short three-item questionnaire designed for 
administration immediately following the completion of a test scenario.  The ASQ takes less than a minute to 
complete.  The longer standard questionnaires typically have completion times of less than ten minutes 
(Dumas, 2003).    

 
 The primary measures of standardized questionnaire quality are reliability (consistency of 
measurement) and validity (measurement of the intended attribute) (Nunnally, 1978).  There are several ways 
to assess reliability, including test-retest and split-half reliability.  The most common method for the 
assessment of reliability is coefficient alpha, a measurement of internal consistency.  Coefficient alpha can 
range from 0 (no reliability) to 1 (perfect reliability).  Measures that can affect an individual’s future, such as 
IQ tests or college entrance exams should have a minimum reliability of .90 (preferably, reliability greater than 
.95).  For other research or evaluation, measurement reliability in the range of .70 to .80 is acceptable 
(Landauer, 1997; Nunnally, 1978). 
 
 A questionnaire’s validity is the extent to which it measures what it claims to measure.  Researchers 
commonly use the Pearson correlation coefficient to assess criterion-related validity (the relationship 
between the measure of interest and a different concurrent or predictive measure).  These correlations do 
not have to be large to provide evidence of validity.  For example, personnel selection instruments with 
validities as low as .30 or .40 can be large enough to justify their use (Nunnally, 1978).  Another approach to 
validity is content validity, typically assessed through the use of factor analysis (which also helps 
questionnaire developers discover or confirm clusters of related items that can form reasonable subscales). 
 
 Regarding the appropriate number of scale steps, it is true that more scale steps are better than 
fewer scale steps, but with rapidly diminishing returns.  The reliability of individual items is a monotonically 
increasing function of the number of steps (Nunnally, 1978).  As the number of scale steps increase from 2 
to 20, the increase in reliability is very rapid at first, but tends to level off at about 7.  After 11 steps there is 
little gain in reliability from increasing the number.  The number of steps in an item is very important for 
measurements based on a single item, but is less important when computing measurements over a number of 
items (as in the computation of an overall or subscale score).     
 
The QUIS 

The QUIS (Chin et al., 1988; Shneiderman, 1987, see http://lap.umd.edu/QUIS/) is a product of the 
Human-Computer Interaction Lab at the University of Maryland.  Its use requires the purchase of a license.  
Chin et al. (1988) evaluated several early versions of the QUIS (Versions 3 through 5).  They reported an 
overall reliability (coefficient alpha) of .94, but did not report any subscale reliability.   

 
 The QUIS is currently at Version 7.  This version includes demographic questions, an overall 
measure of system satisfaction, and 11 specific interface factors.  The QUIS is available in two lengths, short 
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(26 items) and long (71 items).  The items are nine-point scales anchored with opposing adjective phrases 
(such as “confusing” and “clear” for the item, “Messages which appear on screen”).   
 
The CUSI and SUMI 

The Human Factors Research Group (HFRG) at University College Cork published their first 
standardized questionnaire, the Computer Usability Satisfaction Inventory (CUSI), in 1988 (Kirakowski and 
Dillon).  The CUSI was a 22-item questionnaire containing two subscales: Affect and Competence.  Its 
overall reliability was .94, with .91 for Affect and .89 for Competence.   

 
 The HRFG replaced the CUSI with the SUMI (Kirakowski, 1996; Kirakowski and Corbett, 1993; see 
http://www.ucc.ie/hfrg/questionnaires/sumi//index.html), a questionnaire that has six subscales: Global, 
Efficiency, Affect, Helpfulness, Control, and Learnability.  Its 50 items are statements (such as “The 
instructions and prompts are helpful.”) to which participants indicate that they agree, are undecided, or 
disagree.  The SUMI has undergone a significant amount of psychometric development and evaluation to 
arrive at its current form.  The results of several sensitivity studies that had significant main effects of 
system, SUMI scales, and their interaction (for example, McSweeney, 1992, and Wiethoff et al., 1992) 
support its validity.   
 

The reported reliabilities of the six subscales (measured with coefficient alpha) are: 
 

• Global: .92 
• Efficiency: .81 
• Affect: .85 
• Helpfulness: .83 
• Control: .71 
• Learnability: .82 

 
One of the greatest strengths of the SUMI is the database of results that is available for the 

construction of interpretive norms.  This makes it possible for practitioners to compare their results with 
those of similar products (as long as there are similar products in the database).  Another strength is that the 
SUMI is available in different languages (such as UK English, American English, Italian, Spanish, French, 
German, Dutch, Greek, and Swedish).  Like the QUIS, practitioners planning to use SUMI must purchase a 
license for its use (which includes questionnaires and scoring software).  For an additional fee, a trained 
psychometrician at the HRFG will score the results and produce a report. 

 
The SUS 

Usability practitioners at Digital Equipment Corporation (DEC) developed the SUS in the mid 1980s 
(Dumas, 2003).  The ten 5-point items of the SUS provide a unidimensional (no subscales) usability 
measurement that ranges from 0 to 100.  In the first published account of the SUS, Brooke (1996) stated that 
the SUS was robust, reliable, and valid, but did not publish the specific reliability or validity measurements.  
With regard to validity, “it correlates well with other subjective measures of usability (e.g., the general 
usability subscale of the SUMI)” (Brooke, 1996, p. 194).  DEC has copyrighted the SUS, but according to 
Brooke (1996), “the only prerequisite for its use is that any published report should acknowledge the source 
of the measure” (p. 194). 

 
The PSSUQ and CSUQ  

The PSSUQ is a questionnaire designed for the purpose of assessing users’ perceived satisfaction 
with their computer systems.  It has its origin in an internal IBM project called SUMS (System Usability 
MetricS), headed by Suzanne Henry in the late 1980s.  A team of human factors engineers and usability 
specialists working on SUMS created a pool of 7-point scale items based on the work of Whiteside et al. 
(1988), and from that pool selected 18 items to use in the first version of the PSSUQ (Lewis, 1992).  Each item 
was positively worded, with the scale anchors “Strongly Agree” at the first scale position (1) and “Strongly 
Disagree” at the last scale position (7).  A Not Applicable (NA) choice and a comment area were available 
for each item (see Lewis, 1995 for examples of the appearance of the items).   
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 The development of the Computer System Usability Questionnaire (CSUQ) followed the 
development of the first version of the PSSUQ.  Its items are identical to those of the PSSUQ except that 
their wording is appropriate for use in field settings or surveys rather than in a scenario-based usability test, 
making it, essentially, an alternate form of the PSSUQ.  For a discussion of CSUQ research and comparison 
of the PSSUQ and CSUQ items, see Lewis (1995). 
 
 An unrelated series of IBM investigations into customer perception of usability revealed a common 
set of five usability characteristics associated with usability by several different user groups (Doug 
Antonelli, personal communication, January 5, 1991).  The 18-item version of the PSSUQ addressed four of 
these five characteristics (quick completion of work, ease of learning, high-quality documentation and online 
information, and functional adequacy), but did not address the fifth (rapid acquisition of productivity).  The 
second version of the PSSUQ (Lewis, 1995) included an additional item to address this characteristic, 
bringing the total number of items up to 19.  
 
 Lewis (2002) conducted a psychometric evaluation of the PSSUQ using data from several years of 
usability studies (primarily studies of speech dictation systems, but including studies of other types of 
applications).  The results of a factor analysis on these data were consistent with earlier factor analyses 
(Lewis, 1992, 1995) used to define three PSSUQ subscales: System Usefulness (SysUse), Information Quality 
(InfoQual), and Interface Quality (IntQual).  Estimates of reliability were also consistent with those of earlier 
studies.  Analyses of variance indicated that variables such as the specific study, developer, state of 
development, type of product, and type of evaluation significantly affected PSSUQ scores.  Other variables, 
such as gender and completeness of responses to the questionnaire, did not.  Norms derived from the new 
data correlated strongly with norms derived from earlier studies.   
 

Significant correlation analyses indicated scale validity (Lewis, 1995).  For a sample of 22 
participants who completed all PSSUQ and ASQ items in a usability study (Lewis et al., 1990), the overall 
PSSUQ score correlated highly with the sum of the ASQ ratings that participants gave after completing each 
scenario (r(20) = .80, p = .0001).  The overall PSSUQ score correlated significantly with the percentage of 
successful scenario completions (r(29) = -.40, p = .026).  SysUse (r(36) = -.40, p = .006) and IntQual (r(35) = -
.29, p = .08) also correlated with the percentage of successful scenario completions.   

 
 One potential criticism of the PSSUQ has been that some items seemed redundant, and that this 
redundancy might inflate estimates of reliability.  Lewis (2002) investigated the effect of removing three 
items from the second version of the PSSUQ (Items 3, 5, and 13).  With these items removed, the reliability of 
the overall PSSUQ score (using coefficient alpha) was .94 (remaining very high), and the reliabilities of the 
three subscales were:  
 

• SysUse: .90 
• InfoQual: .91 
• IntQual: .83 

 
All of the reliabilities exceeded .80, indicating sufficient reliability to be valuable as usability 

measurements (Anastasi, 1976; Landauer, 1997).  Thus, the third (and current) version of the PSSUQ has 16 
7-point scale items (see Table 12 for the items and their normative scores from Lewis, 2002).   

 
 Note that the scale construction is such that lower scores are better than higher scores, and that 
the means of the items and scales all fall below the scale midpoint of 4.  With the exception of Item 7 (“The 
system gave error messages that clearly told me how to fix problems .”), the upper limits of the confidence 
intervals are below 4.  This shows that practitioners should not exclusively use the scale midpoint as a 
reference from which they would judge participants’ perceptions of usability.  Rather, they should also use 
the norms shown in Table 12 (and comparison with these norms is probably more meaningful than 
comparison with the scale midpoint). 
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Table 12. PSSUQ Version 3 items, scales, and normative scores (99% confidence intervals)  

  Norms (99% CI)  
Item/ 
Scale 

Item Text/Scale Scoring Rule 
 

Lower 
Limit 

Mean Upper 
Limit 

 

      
Q1 Overall, I am satisfied with how easy it is to use this 

system 
2.60 2.85 3.09  

Q2 It was simple to use this system. 2.45 2.69 2.93  
Q3 I was able to complete the tasks and scenarios quickly 

using this system. 
2.86 3.16 3.45  

Q4 I felt comfortable using this system. 2.40 2.66 2.91  
Q5 It was easy to learn to use this system. 2.07 2.27 2.48  
Q6 I believe I could become productive quickly using this 

system. 
2.54 2.86 3.17  

      
Q7 The system gave error messages that clearly told me 

how to fix problems. 
3.36 3.70 4.05  

Q8 Whenever I made a mistake using the system, I could 
recover easily and quickly. 

2.93 3.21 3.49  

Q9 The information (such as on-line help, on-screen 
messages and other documentation) provided with this 
system was clear. 

2.65 2.96 3.27  

Q10 It was easy to find the information I needed. 2.79 3.09 3.38  
Q11 The information was effective in helping me complete the 

tasks and scenarios. 
2.46 2.74 3.01  

Q12 The organization of information on the system screens 
was clear. 

2.41 2.66 2.92  

      
 Note: The “interface” includes those items that you use to 

interact with the system.  For example, some 
components of the interface are the keyboard, the 
mouse, the microphone, and the screens (including their 
graphics and language). 

    

Q13 The interface of this system was pleasant. 2.06 2.28 2.49  
Q14 I liked using the interface of this system. 2.18 2.42 2.66  
Q15 This system has all the functions and capabilities I 

expect it to have. 
2.51 2.79 3.07  

Q16 Overall, I am satisfied with this system. 2.55 2.82 3.09  
      

SysUse Average Items 1 through 6. 2.57 2.80 3.02  
InfoQual Average Items 7 through 12. 2.79 3.02 3.24  
IntQual Average Items 13 through 15. 2.28 2.49 2.71  
Overall Average Items 1 through 16. 2.62 2.82 3.02  

 
Table notes: SysUse = system usefulness, InfoQual = information quality, IntQual = interface 

quality, CI = confidence interval.  Means appear in bold face.  Scores can range from 1 (strongly agree) 
to 7 (strongly disagree), with lower scores better than higher scores. 
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The way that Item 7 stands out from the others indicates: 
 

• It should not surprise practitioners if they find this in their own data. 
• It is a difficult task to provide usable error messages throughout a product. 
• It may well be worth the effort to focus on providing usable error messages. 
• If practitioners find the mean for this item to be equal to or less than the mean of the other items in 

InfoQual (assuming they are in line with the norms), they have been successful in creating better-
than-average error messages. 
 
The consistent pattern of relatively poor ratings for InfoQual versus IntQual (seen across all of the 

studies – for details and complete normative data, see Lewis, 2002) suggests that practitioners who find this 
pattern in their data should not conclude that they have poor documentation or a great interface.  Suppose, 
however, that this pattern appeared in the first iteration of a usability evaluation and the developers decided 
to emphasize improvement to the quality of their information.  Any subsequent decline in the difference 
between InfoQual and IntQual would be evidence of a successful intervention. 

 
Another potential criticism of the PSSUQ is that the items do not follow the typical convention of 

varying the tone of the items so that half of the items elicit agreement and the other half elicit disagreement.  
The rationale for the decision to consistently align the items was to make it as easy as possible for 
participants to complete the questionnaire.  With consistent item alignment, the proper way to mark 
responses on the items is clearer, potentially reducing response errors due to participant confusion.  Also, 
the use of negatively worded items can produce a number of undesirable effects (Barnette, 2000; Ibrahim, 
2001), including problems with internal consistency and factor structure.  The setting in which balancing the 
tone of the items is likely to be of greatest value is when participants do not have a high degree of 
motivation for providing reasonable and honest responses (for example, in clinical and educational settings).  
Obtaining reasonable and honest responses is rarely a problem in most usability testing settings. 
 
 Additional key findings and conclusions from Lewis (2002) were:  
 

• There was no evidence of response styles (especially, no evidence of extreme response style) in 
the PSSUQ data. 

• Because there is a possibility of extreme response and acquiescence response styles in cross-
cultural research (Baumgartner and Steenkamp, 2001; Clarke, 2001; Grimm and Church, 1999, van de 
Vijver and Leung, 2001), practitioners should avoid using questionnaires for cross-cultural 
comparison unless that use has been validated.  Other types of group comparisons with the 
PSSUQ are valid because any effect of response style should cancel out across experimental 
conditions. 

• Scale scores from incomplete PSSUQs were indistinguishable from those computed from complete 
PSSUQs.  These data do not provide information concerning how many items a participant might 
ignore and still produce reliable scale scores.  They do suggest that, in practice, participants 
typically complete enough items to produce reliable scale scores.  
 
The similarity of psychometric properties across the various versions of the PSSUQ, despite the 

passage of time and differences in the types of systems studied, provides evidence of significant 
generalizability for the questionnaire, supporting its use by practitioners for measuring participant 
satisfaction with the usability of tested systems.  Due to its generalizability, practitioners can confidently 
use the PSSUQ when evaluating different types of products and at different times during the development 
process.  The PSSUQ can be especially useful in competitive evaluations (for an example, see Lewis, 1996b) 
or when tracking changes in usability as a function of design changes made during development.  
Practitioners and researchers are free to use the PSSUQ and CSUQ (no license fees), but anyone using them 
should cite the source. 
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The ASQ   
The ASQ (Lewis, 1991b, 1995) is an extremely short questionnaire (three 7-point scale items using 

the same format as the PSSUQ).  The items address three important aspects of user satisfaction with system 
usability: ease of task completion (“Overall, I am satisfied with the ease of completing the tasks in this 
scenario.”), time to complete a task (“Overall, I am satisfied with the amount of time it took to complete the 
tasks in this scenario.”), and adequacy of support information (“Overall, I am satisfied with the support 
information (on-line help, messages, documentation) when completing tasks.”)  The overall ASQ score is the 
average of responses to these three items.   

 
Because the questionnaire is short, it takes very little time for participants to complete, an important 

practical consideration for usability studies.  Measurements of ASQ reliability (using coefficient alpha) have 
ranged from .90 to .96 (Lewis, 1995).  A significant correlation between ASQ scores and successful scenario 
completion (r(46) = -.40, p < .01) in Lewis et al. (1990, analysis reported in Lewis, 1995) provided evidence of 
concurrent validity.  Like the PSSUQ and CSUQ, the ASQ is available for free use by practitioners and 
researchers, but anyone using the ASQ should cite the source. 
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WRAPPING UP 
 
Getting More Information about Usability Testing 

This chapter has provided fundamental and some advanced information about usability testing, 
but there is only so much that you can cover in a single chapter.  For additional chapter-length treatments of 
the basics of usability testing, see Nielsen (1997) and Dumas (2003).  There are also two well-known books 
devoted to the topic of usability testing. 

 
 Dumas and Redish (1999) is one of these book-length treatments of usability testing.  The content 
and references are somewhat dated.  The 1999 copyright date is a bit misleading, as the body of the book 
has not changed since its 1993 edition.  The 1999 edition does include a new preface and some updated 
reading recommendations, and provides an excellent coverage of the fundamentals of usability testing.  
 
 The other well-known usability testing book is Rubin (1994).  Like Dumas and Redish (1999), the 
content and references are ten years out of date.  It, too, covers the fundamentals of usability testing (which 
haven’t really changed for 20 years) very well and contains many useful samples of a variety of testing-
related forms and documents. 
 
 For late-breaking developments in usability research and practice, there are a number of annual 
conferences that have usability evaluation as a significant portion of their content.  Companies making a 
sincere effort in the professional development of their usability practitioners should ensure that their 
personnel have access to the proceedings of these conferences and should support attendance at one or 
more of these conferences at least every few years.  These major conferences are:  
 

• Usability Professionals Association (see http://www.upassoc.org/) 
• Human-Computer Interaction International (see http://www.hci-international.org/) 
• ACM Special Interest Group in Computer-Human Interaction (http://www.acm.org/sigchi/) 
• Human Factors and Ergonomics Society (see http://hfes.org/) 
• INTERACT (held every two years, for example, see http://www.interact2005.org/) 

 
A Research Challenge: Improved Understanding of Usability Problem Detection 

The recently published papers that have questioned the reliability of usability problem discovery 
(Hertzum and Jacobsen, 2003; Kessner et al., 2001; Molich et al., 1998, 2004) have raised a number of 
questions.  Dumas (2003, p. 1112) responded, “It is not clear why there is so little overlap in problems.  Are 
slight variations in method the cause?  Are the problems really the same but just described differently?  We 
look to further research to sort out the possibilities.”  Hertzum and Jacobsen (2003) noted the following as 
potential causes of lack of reliability across evaluations: 

 
• Vague goal analyses that lead to variability in task scenarios 
• Vague evaluation procedures 
• Vague problem criteria that lead to acceptance of anything as a usability problem 

 
 Developing a better understanding of why these studies produced their results, which are so at 
odds with the apparent success of usability testing (Al-Awar et al., 1981; Bailey, 1993; Bailey et al., 1992; 
Gould et al., 1987; Kelley, 1984; Kennedy, 1982; Lewis, 1982; Lewis, 1996b; Marshall et al., 1990; Ruthford 
and Ramey, 2000), should be one of the top usability research efforts of the coming decade.  An improved 
understanding might provide guidance about how or whether practitioners should change the way they 
conduct usability tests.  One of the most important components of this research effort should be to 
investigate the cognitive mechanisms that underlie the detection of usability problems.  Even after over 20 
years of professional practice with usability methods, there is still no general consensus on the boundaries 
of what constitutes a usability problem, or on the appropriate levels of description of usability problems 
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(Lewis, 2001b).  Doctoral candidates should take note – this is a topic rich with theoretical and practical 
consequences! 
 
 For example, it seems reasonable that the task of the observer in a usability study involves classical 
signal-detection issues (Massaro, 1975).  The observer monitors participant behavior, and at any given 
moment must decide whether that observed behavior is indicative of a usability problem.  Thus, there are 
two ways for an observer to make correct decisions (rejecting non-problem behaviors correctly, identifying 
problem behaviors correctly) and two ways to make incorrect decisions (identifying non-problem behaviors 
as indicative of a usability problem, failing to identify problem behaviors as indicative of a usability 
problem).  In signal detection terms, the names for these right and wrong decisions are Correct Rejection, 
Hit, False Alarm, and Miss.  The rates for these types of decisions depend independently on both the skill 
and the bias of the observer.  Applying signal detection theory to the assessment of the skill and bias of 
usability test observers is a potentially rich, but to date untapped, area of research, with potential 
application for both selection and training of observers.  
 
Usability Testing: Yesterday, Today, and Tomorrow 

It seems clear that usability testing (both summative and formative) is here to stay, and that its 
general form will remain similar to the forms that emerged in the late 1970s and early 1980s.  The last 25 years 
have seen the introduction of more usability evaluation techniques and some consensus (and some 
continuing debate) on the conditions under which to use the various techniques (of which usability testing 
is a major one).  In the last 15 years, usability researchers have made significant progress in the areas of 
standardized usability questionnaires and sample size estimation for formative usability tests.  As we look to 
the future, usability practitioners should monitor the continuing research that will almost certainly take place 
in developing a better understanding of the cognitive mechanisms of usability problem discovery because 
such an understanding has the potential to increase the reliability of usability testing.   

 
In the mean time, practitioners will continue to perform usability tests, exercising professional 

judgment as required.  Usability testing is not a perfect usability evaluation method in the sense that it does 
not guarantee the discovery of all possible usability problems, but it doesn’t have to be perfect to be useful 
and effective.  It is, however, important to understand its strengths, limitations, and current best practices to 
ensure its proper (most effective) use. 
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