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A Queueing Theory Primer

~Tn this chapter we summarize the important results to which one is
exposed in a first course on queueing theory. This material is drawn from
the companion volume [KLEI 75] in which will be found a list of results
that key the reader to the location where each result is derived. Our
purpose is to lay the foundation for the remainder of the book, which is
devoted to the application of this theory in real-world situations; these
applications require sound judgment and experience in formulating mod-
els as well as in developing operational formulas (exact or approximate)

that may be used for analysis and design of systems. We give a rather

complete review here (by stating—not deriving—results) so that this

material will form a self-contained body of results, to be used in later

chapters.

Consider any system that has a capacity C, the maximum rate at which
it can perform work. Assume that R represents the average rate at which
work is demanded from this system. One fundamental law of nature
states that if R <C then the system can ‘“handle” the demands placed
upon it, whereas if R > C then the system capacity is insufficient and all
the unpleasant and catastrophic effects of saturation will be experienced.
However, even when R <C we still experience a different set of un-

‘pleasantnesses that come about because of the irregularity of the de-

mands. For exarple, consider the corner telephone booth, which on the
average can handle the load demanded of it. Suppose now that two people
approach that telephone booth almost simultaneously; it is clear that only
one of the two can obtain service at a given time and the other must wait
in a queue until that one is finished. Such queues arise from two sources:
the first is the unscheduled arrival times of the customers; the second is
the random demand (duration of service) that each customer requires of
the system. The characterization of these two unpredictable quantities
(the arrival times and the service times) and the evaluation of their effect
on queueing phenomena form the essence of queueing theory. In the
following section we introduce some of the usual notation for queueing
Systems and then we proceed to summarize the major results for various
systems.
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1.1. NOTATION

Here we introduce only that notation required for the statement of
results in this chapter. A more complete listing is given in the glossary at
the end of the book.

We let C. denote the nth customer to arrive at a queueing facility. The
important random variables to associate with C, are

T, = arrival time for C, (1.1)
t» = T —Tn—1 = interarrival time between C, and C,_, 1.2)
X, = service time for C, L "(1.3)

It is the sequence of random variables {t,} and {x.} that really “drives”
the queueing system. All these random variables are selected inde-
pendently of each other, and so we define the two generic random
variables ’

f =interarrival time (1.4)
X =service time (1.5)

Associated with each is a probability distribution function (PDF), that is,

A(t)=Pli=t] (1.6)
B(x)=P[x=x] 1.7)
and the related probability density function (pdf), namely,
dA(t
a( =440 (1.8)
_dB(x)
b(x)= dx (1.9)

In this last definition for the pdf we permit the use of impulse functions as
discussed, for example, in Volume I of this text. The moments associated
with these random variables are denoted by

1

Eff]=1=+ (1.10)
E[(F)]=1* (1.11)
E[x]=x =i (1.12)
E[(x)]=x" (1.13)

W‘her.e the symbol u is often reserved only for the case of exponentially
distributed service times. Furthermore, we need the Laplace transform
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associated with these pdf’s, namely
E[e ™= A*(s) (1.14)
E[e™]=B*(s) (1.15)

The integral representation of this transform [say for a(t)] is simply
A*(s)=J' a(t)e™ dt (1.16)
-

A._key use of this transform is its moment generating property; for
example, the moments t* may be generated from A*(s) through the

relationship
d*A*(s)

(__1\keK
a5k s=0_( 1)t (1.17)
We often denote the kth derivative of a function f(t) evaluated at t =t, by .
k
O| ~ o) (118

Thus Eq. (1.17) may be written as A*®(0) =(—1)"t".

Both t and % are the input random variables to the queueing system;
now we must define some of the important performance variables, namely,
the number of customers in the system, the waiting time per customer,
and the total time that a customer spends in the system, that is,

N(t) = number of customers in system at time ¢ (1.19)
w. = waiting time (in queue) for C, (1.20)
s, =system time (queue plus service) for G, (1.21)

The corresponding limiting random variables (after the system has been
in operation a long time) for a stable queue are N, W, and §. As with  and
% we may define the PDF, the pdf, the first moment, and the appropriate
transform for N, w, and § as follows:

P[N=k] W(y)=P[Ww=y] S(y)=P[§=y]
- _dW(y) _ds(y)

P[N = k] =g s ="

E[N]=N Ew]l=W E[5]1=T

E[z"1=Q(z)  E[e™]=W*s)  E[e™]=5%c)
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The study of queues naturally breaks into three cases: elementary
queueing theory, intermediate queueing theory, and advanced queueing
theory. What distinguishes these three cases are the assumptions regard-
ing a(t) and b(x). In order to name the different kinds of systems we wish
to discuss, a rather simple shorthand notation is used for describing
queues. This involves a three-component description, A/B/m, which de-
notes an m-server queueing system where A and B “describe” the
interarrival time distribution and service time distribution, respectively. A
and B take on values from the following set of symbols, which are meant
to remind the reader which distributions they refer to: B

M =exponential (i.e., Markovian)
E.=r-stage Erlangian

Hr =R-stage Hyperexponential
D= Deterministic
G = General

Specifically, if one of these symbols were used in place of B then it would
refer to the following pdf (x =0):

M: b(x)=pe™ (1.22)
E:  bx)= m(r(;:i);‘)l!e‘”‘" (1.23)

Hz: b(x)=), apue ™" ( o = 1) (a; =0) (1.24)
i=1 i=1 .

D: b(x)=uo<x—&> (1.25)
G: b(x) is arbitrary

where in the next to last expression uo(x —1/u) refers to a unit impulse
occurring at the position x = 1/p. Any distribution is permitted when G is
assumed. Occasionally we add one or two more items to our three-
component description in order to describe the system’s storage capacity
(denoted by K) or the size of the customer population (denoted by M), and
these will be commented on appropriately when used (otherwise they are
assumed to be infinite). The simplest interesting system we consider in this
chapter is the M/M/1 queue in which we have exponential interarrival
times, exponential service times, and a single server (see Section 1.4). The
most complicated system we consider in this chapter is G/G/1 in which the
exponential distributions are replaced by arbitrary distributions (see Sec-
tions 1.2 and 1.10). In this review the majority of our results-apply only
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to the first-come-first-serve queueing discipline; in Chapter 3, we study
the effect of other queueing disciplines. Let us now proceed with our

summary of results.

1.2. GENERAL RESULTS

Perhaps the most important system parameter for G/G/1 ig the utiliza-
tion factor p, defined as the product of the average arrival rate of

customers to the system times the average service time each requires, that

> p =A% (1.26)

This quayntity gives the fraction of time that the single server is busy and is
also equal to the ratio of the rate at which work arrives to the. system
divided by the capacity of the system to do work, that is, R/C as dlscussefi
earlier.* In the multiple-server system G/G/m the corresponding defini-
tion is
p= AL 1.27)
m

which also is equal to R/C and may be interpreted as the expected
fraction of busy servers when each server has the same distribution of

- service time; more generally, p is the expected fraction of the system’s

capacity that is in use. In all cases a stable system (one that yields finite
average delays and queue lengths) is one for which

0=p<1 (1.28)

and we note that the case p=1 is not permitted (except in the very
special situation of a D/D/m queue). As we shall see, thg closgr P
approaches unity, the larger are the queues and the waiting times; it is
this quantity that essentially reflects the way in which the system perfor-
mance varies with the average system load. o

The average time in system is simply related to the average service time
and the average waiting time through the fundamental equation

T=%x+W (1.29)

and it is the quantity W that reflects the price we must pay er sharing a
given resource (server) with other customers. Whereas p is the most
important system parameter, it is fair to say that one of the more famous

*On the average, A customers arrive per second and each brings X sec of work for the
System; thus R = A% The (single-server) system can perform 1 sec of work per second of
elapsed time, and so C=1.
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formulas from queueing is Little’s result, which relates the average
number in the system to the average arrival rate and the average time
spent in that system, namely,

N=AT (1.30)

This result enters most of the calculations we make in this book and is
extremely general in its application. The corresponding result for number
and time in queue is simply given by

N, =AW - (1.31)

where N, is merely the average queue size. Furthermore, it is true in
G/G/m-that these quantities are related by*

N,=N-mp (1.32)

We have already given one fundamental law that applies to queueing
systems, namely that R < C in order for the system to be stable. A second
common and general law of nature also finds its way into our analyses; it
relates the rate at which accumulation within a system occurs as a
function of the input and output rates to and from that system. In
particular, if we let E, denote the system state in which k customers are
present and if we let

P(t)=P[N(t)=k] (1.33)
which is merely the probability that the system state at time t is E, then,
loosely stated, we have

% = [flow rate of probability into E. at time t]

—[flow rate of probability out of Ex at time ¢] >(1.34)

Equation (1.34) will allow us to write down time-dependent relationships
among the system probabilities in a straightforward fashion. Now con-
sider a stable system, for which the probability P.(t) has a limiting value
(as t— =) which we denote by px, (this represents the fraction of time
that the system will contain k customers in the steady state). If the
interarrival times are exponentially distributed (that is, they form a
Poisson arrival process), then the equilibrium probability, r., that an
arriving customer finds k in the system upon his arrival will .in fact equal
the long-run probability of there being k customers in the system, that is

P« = 1. On the other hand, if we denote by di the equilibrium probability -

that a departure leaves behind k customers in the system, then di =r if

* This follows from T =%+ W and Little’s result.
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the system state N(t) is permitted to change by at most one at any time.
Thus, if we have unit state changes and Poisson arrivals, then we have the

gituation in which pc =rn. = d.

1.3. MARKOYV, BIRTH-DEATH, AND
POISSON PROCESSES
Before we proceed to discuss the results for elementary queueing
systems it is convenient to list some of the well-known results for some
simple and important random processes that form the foundation for the

queueing results we shall quote.

We begin with discrete-state discrete-time Markov processes such that
X, denotes the discrete value of the (random) process at its nth step. The
defining condition for such a Markov chain is

P[Xn =j l Xn~] = in_1, ey X1 = 11]= P[Xn =j | Xoo1= in_l] (135)

This is merely an expression of the fact that the present state completely
summarizes all of the pertinent past history so far as that history affects
the future of the process. If we let

" =P[X, =i] (1.36)
and denote the vector of these probabilities by
aV=[=y, 7, .. .] (1.37)

and moreover if we denote the one-step transition probabilities for
homogeneous Markov chains by

py =P[Xu =j | X1 =1i] (1.38)

and collect these into a square matrix denoted by P =(p;), then we have
the basic results for the time-dependent probabilities of this Markov
process, namely,

mV=x"""P (1.39)
a"=mOP" ‘ (1.40)
The sequence P" (n=0,1,2,...) is equal to the inverse z-transform of
the matrix [I—zP] ', where I represents the identity matrix and —1 refers

to the matrix inverse. The more useful steady-state behavior of these
Probabilities may be found by solving the equation

w=uP (1.41)



s

8 A QUEUEING THEORY PRIMER

along with the condition that
2 m=1 (1.42)
i=0

where we have used the notation ; =lim,—.. 7{". Finally, we comment
that the time the process spends in any state is geometrically distributed
(an inherent property of all Markov processes); this distribution is, of
course the only discrete memoryless distribution.

Let us now consider the case of a discrete-state continuous-time
homogeneous Markov process X(t); here we have a defining property
much as we did in Eq. (1.35). The time the process spends in any state is
exponentially distributed for all continuous-time Markov processes; this is
the only (continuous) memoryless distribution, and it is this property that
makes the analysis simple. We now define the transition probabilities as

pi(t)=P[X(s+1t)=j | X(s)=i] - (1.43)

The matrix of these transition probabilities will be denoted by H(t), and
in terms of this matrix we may express the Chapman—Kolmogorov
equations as

H(t) = H(: — s)H(s) (1.44)

In a real sense H(t) corresponds to P" and that which corresponds to P
itself is H(At) (namely the transition probabilities over an infinitesimal
interval). Of more use is the matrix Q =[q;], referred to as the infinitesi-
mal generator of the process; it is defined by

0 = im HAD I

Ar—0 At (1.45)

In terms of this matrix we may then express the time-dependent behavior
of our Markov process by the equation

de —“H(1)Q (1.46)

whose solution is
H(t)=e® (1.47)

The steady-state behavior of this process, namely, the stable probabilities
w, are given through the basic equation

wQ=0 (1.48) .

along with the normalizing equation (1.42). We have occasion to discuss

the discrete-state continuous-time and continuous-state continuous-time )
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processes in Chapter 2 below. (A more complete summary for Markov
chains is given in tabular form in the summary of results in Volume I.)
Perhaps the most fundamental random process we encounter in queue-
ing theory is the Poisson process that describes a collection of arrivals for
which the interarrival times are independent and exponentially distrib-
uted with a mean interarrival time 7= 1/A. In particular, the probability
P.(t) of k arrivals in an interval whose duration is t sec is given by

k
RO)(M)e (1.49)
The average number of arrivals during this interval is merely
N()= At (1.50)
and the variance is given by
ONw = At (1.51)

We note that the mean and variance for this procesé are identical. The
z-transform for this process is simply given by

E[zNV]= MV (1.52)
The assumption of an exponential interarrival time means, of course,
a(t)=re™ t=0 (1.53)

which, we repeat, is the memoryless distribution. Here, the mean and
variance are, respectively, =1/ and o>=1/A

Among the class of continuous-time Markov processes there is the
special case of birth—-death processes in which the system state changes by
at most one (up or down) in any infinitesimal interval. In such cases we
talk about the birth rate A, which is the average rate of births when the
system contains k customers, and also of the death rate u., which is the
average rate at which deaths occur when the population is of size k. The
time-dependent behavior for such a system is essentially given in Eq.
(1.47). The equilibrium behavior as defined in Eq. (1.48) takes on an
especially simple form for this class of birth-death processes whose
solution is given as follows (here we use the more usual notation p, rather

. than , to denote the probability of having k customers in the system):

k~—1 A
Dk = Po H : (1.54)
i=0 Hi+1
With the constant p, being evaluated through
1
po=——=7 (1.55)
1 + ;—11 H /[Ja+1
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The application of this equilibrium solution leads us directly to the class
of elementary queueing systems which we discuss in the next three
sections.

1.4. THE M/M/1 QUEUE

The M/M/1 queue is the simplest interesting queueing system we
present. It is the classic example and the analytical techniques required
are rather elementary. Whereas these techniques do not carry over mto
more complex queueing systems, the behavior of M/M/1 is in many ways
similar to that observed in the more complex cases.

Since this system has a Poisson input (with an average arrival rate A)
and makes unit step changes (single service and single arrivals), then
p. =n =d.. (Recall that the average service time is ¥ =1/u.) This dis-
tribution is given by

pe=(1—p)p" (1.56)
and so we immediately find that the average number in the system is

given by

g_ P
N= -5 ’ (1.57)
with variance

o =(1—_“’p7 : (1.58)

Using Little’s result and Eq. (1.32), we may immediately write down the
two basic performance expressions for average delays in M/M/1:

_plu

W= (1.59)
_lp ‘

T—l_p (1.60)

The terms N, W, and T all demonstrate the same common behavior as

regards the utilization factor p; namely, they all behave inversely with

respect to the quantity (1 —p). This effect is dominant for M/M/1 as well

as for most common queueing systems, and in Figure 1.1 we show the

average time in system as a function of the utilization factor. Thus as p
approaches unity from below, these average delays and queue sizes grow
without bound! This is true of essentially every queueing system one will
encounter and shows the extreme price that must be paid if one is
interested in running the system close to its capacity (p =1).
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Figure 1.1 Average delay as a function of p for M/M/1.

As for the distributions, we have already seen that there is a geometri-
cally distributed number of customers in the system and we now give the
waiting time and system time pdf’s along with the corresponding PDF’s
for the case of first-come-first-serve (FCFS):

w(y)=(1—pluo(y) +A(L—p)e ™™  y=0 (1.61)

[where uo(y) is the unit impulse (Dirac delta) function],
W(y)=1—pe™*” y=0 (1.62)
s(y)=p(1—p)e ™  y=0 (1.63)
S(y)=1—e*"*  y=0 (1.64)

With the exception of the accumulation of probability at the origin for
the waiting time, we note that these are all exponential in nature. The idle
period I (the interval of time from the departure of a customer who
leaves the system empty until the next arrival) and the interdeparture
time D (the time between successive departures) are also both exponen-

tially distributed with the parameter A:

PI=y]=P[D=y]l=1-¢™ y=0 (1.65)

The busy period (the interval of time between successive idle periods) has
a pdf denoted by g(y) given in terms of the modified Bessel function of
the first kind as

gly)= L e ML (2yvAw) (1.66)
yVp
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The probability f. that n customers are served during a busy period is
given by

fa

=1(2"_2 (1.67)

” n_1>pn—l(1+p)1—2n
Two simple extensions for the M/M/1 system are easily described. First,
there is the case of bulk arrivals where with probability g« a group of k
customers arrives at each arrival instant from the Poisson process; we
then define the generating function for this distribution as usual by
G(z)=Y%-0 gz* with which we may then give the generating function for
the number of customers in this bulk arrival M/M/1 system,* namely,

p(1—p)1-2z)

Q)= i A[1=-G @)

(1.68)

The second generalization is a bulk service system in which a free server
will take up to, but no more than, r customers and serve them collectively
(as if they were a single customer) with an exponentially distributed
service time. The probability of finding k customers in this system is given

by
B 1\/ 1\*
r=(1-2)(z)

where z, is that unique root lying outside the unit disk, that is, |zo|>1, for
the equation

k=0,1,2,... (1.69)

rpz""' =(1+rp)z'+1=0 - (1.70)
and where, as usual, p = A/ru.

A final generalization, which we will use in Chapter 4, involves the case
of an M/M/1 system with a finite number of customers, namely M, that
behave in the following way. A customer is either in the system (waiting
for or being served) or outside the system and arriving; the interval from
the time he leaves the system until he returns once again is exponentially
distributed with mean 1/A. This case gives the following expression for the
probability for finding k customers in the system:

p= &M‘/(M’k)’]()‘/“)k
Z [MY(M = i)\ p)

(1.71y

* That is, recall Q(z)=E[z"], not to be confused with the infinitesimal generator Q
defined in Eq. (1.45).
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So much for the classic M/M/1 system. In the next section, we retain
the Markovian assumptions but consider the case of multiple servers.

1.5. THE M/M/m QUEUEING SYSTEM

We now consider the generalization to the case of m servers. A single
ueue forms in front of this collection of m servers and the customer at
the head of the queue will be handled by the first available server. As
usual, A is the arrival rate and 1/u is the average service time, with

pENmp. The equilibrium probability of finding k customers in the
" system is given by

k

pO(_n;(iL) k=m

e mm (1.72)
po(—pzn—r!"— k=m

where

o o

|5 (mp) (mp) ]

p“[&; K Tml(1—p) (1.73)

A. K. Erlang, the father of queueing theory, considered this system as
one model for the behavior of telephone systems early in this century
[BROC 48]. Identified with his name is the Erlang-C formula, which gives
the probability that an arriving customer must wait for a server; his
expression is given by p. from Eq. (1.72). Extensive tables of this
quantity are available in the many books dealing with telephony
[TELE 70].

Further results for M/M/m may be found in Section 1.9, which discus-
ses G/M/m. Specifically W and W(y) are given in Eqgs. (1.113) and
(1.114), respectively, where for M/M/m we have simply that o = p.

Erlang considered a second model for telephone systems that is the
same as M/M/m but permits no customers to wait; that is, it is a loss
system with at most m customers present at any one time. In this case,
the probability of finding k customers in the system is given by

Mup) k!
P = M)/

- (1.74)
2 (Mw)'fit

for the range 0=k =m. The important quantity of interest here is the

Probability that a customer upon arrival to the system will find no empty

Servers and will therefore be “lost;” this is referred to as the Erlang-B

f<.>rmu1a or as Erlang’s Loss Formula (also commonly tabulated) and is

8ven simply by p.. from Eq. (1.74).
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1.6. MARKOVIAN QUEUEING NETWORKS

Before leaving the comfortable world of exponential distributions, we
wish to discuss another class of results that applies to networks of queues
in which customers move from one queueing facility to another in some
random fashion until they depart from the system at various points.
Specifically, we consider an N-node network in which the ith node
consists of a single queue served by m, servers, each of which has an
exponentially distributed service time of mean 1/w;. The ith node receives
from outside the network a sequence of arrivals from an .independent
Poisson source at an average rate of vy customers per second. When a
customer completes service at the ith node he will proceed next to the jth
node with probability r;; thus he becomes an “internal” arrival to the jth
node. On the other hand, upon leaving the ith node a customer will
depart from the entire network with probability 1 — Y2, r;. We define the
total arrival rate to the ith node to be, on the average, A customers per
second, and this consists both of external and internal arrivals. The set of
defining equations for A; is given by

N
h=y+ Zl At (1.75)
=
A large measure of independence exists among the nodes in such a
network, as may be seen from the expression given below for the joint
distribution of finding k: customers in the first node, k. customers in the
second node, and so on:

p(kl, kz, . (176)

.y kN) = p1(k1)p2(k2) N pN(kN)

The factoring of this joint distribution exposes the independence. In
Chapters 4 and 5 we are delighted to take advantage of this independ-

‘ence. In particular, each factor in this last expression, say pi(k:), is

merely the solution to an isolated M/M/m: queueing facility operating by
itself with an input rate A;; the solution for pi(k:) is given in Eq. (1.72).

Another class of Markovian queueing networks consists of those net-
works in which customers are permitted neither to leave nor to enter. In
particular, we assume that K customers are placed (trapped) within a
network similar to the one described above and that they move around
from node to node, but no departures from any node are permitted; that
is, 1-YiLir;=0 for all i. These closed networks have the following
solution for the joint distribution of finding customers in various nodes:

(1.77)

_L s
p(ki, ko, ..., k)= G(K) Ul Bi(k:)

12
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where the set of numbers {x;} must satisfy the following linear equations
[Similar to Eq. (1.75) with v =0]:

X = i Xt i= 1, 2, ey N (178)
i=1
and where - |
= : (1.79
=2 11505

where k= (ki, ks, ..., kv) and A is that set of vectors k for which
ktkatetke=K and where
k:! ki=m

(1.80)
m!m&™ k=zm

Bi(ki)={

These open and closed networks will be developed further in Chapter
4.

- 1.7. THE M/G/1 QUEUE

In this and the following two sections we study systems that fall in the
domain of intermediate queueing theory. This classification refers to
those systems in which we permit either (but not both) the interarrival
time or the service time to be nonexponentially distributed; the case when
both these random variables are nonexponential forms part of advanced
queueing theory which we discuss in Section 1.10. For the M/G/1 system
we cannot give explicit distributions for the number in system or for the
time in system as we did for the M/M/1 system [specifically, see Egs.
(1.56) and (1.64) above]. Rather, we find expressions for the transforms
of these distributions.

The M/G/1 system is characterized by a Poisson arrival process at a
mean rate of A arrivals per second and with an arbitrary or general
service time distribution of form B(x) with a mean service time of X sec
and with kth moment equal to x*. Due to the Poisson arrival process and
due to the fact that the number in the system changes by at most one, we

_again have p. =r = di. ‘

The basic (difference) equation describing the relationship among ran-

dom variables for this first-come-first-serve M/G/1 system is

= qn - 1 + Un+1
Et P if gu =0

if g.>0
"4 (1.81)

Where q, is the number of customers left behind by the departure of
Customer C,, and v, is the number of customers who enter during his
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service time (x.). The sequence {¢.} forms a (discrete-state continuous-
time) Markov chain. The entire transient and equilibrium behavior for the
system is contained in this equation, and from it we may derive most of
our results for M/G/1.

By far the most well-known result for the M/G/1 system is the
Pollaczek-Khinchin (P-K) mean value formula, which gives the following
compact expression for the (equilibrium) average waiting time in the
queue:

_Ax2

(1-p)
The numerator term, denoted by Wo=Ax%/2, is, in fact, equal to the
expected time that a newly arriving customer must spend in the queue
while that customer (if any) which he finds in service completes his
remaining required service time.* From this formula one may easily
calculate T using Eq. (1.29); combining that result with the results quoted
in Egs. (1.31) and (1.32) we easily come up with the P-K mean-value
formula for number in system as

- A2
N=p+ T—p

W

(1.83)

* This quantity is related to the concept of residual life, which we will use in this book. To
elaborate, let us consider the sequence of instants located on the real-time axis such
that the set of distances between adjacent points is a set of independent, identically
distributed random variables whose density we shall denote by f(x) (that is, we
are dealing with a renewal process). Let m, denote the nth moment of these interval
lengths. Let s now select a point along the time axis at random; the interval in which this
point falls will be referred to as the “sampled” interval. The length of the sampled interval is
known as the lifetime of the interval, the time from the start of the sampled interval to this

point is known as the age of the interval, and the distance from this selected point until the

end of the sampled interval is known as the residual life of the interval. We are concerned
with the statistics of the residual life. The pdf for residual life is given by f(x)=
[1-F(x)]/(m.) and the Laplace transform of this density is given by F*(s)=
[1—F*(s)l/(sm,); the notation here is that F(x)=f5f(y)dy and F*(s) is the Laplace
transform associated with the pdf f(x). Perhaps the most significant statistic is- the mean
residual life, given by m./2m,; that is, the expected value of the remaining length of the
interval is merely the second moment over twice the first moment of the interval lengths
themselves. Also, the pdf for the lifetime of the sampled interval is xf(x)/m,.

The last quantity we wish to describe is the probability that the length of an interval (or
that the value of any random variable) lies between x and x +dx given that it exceeds x;

dividing this probability by dx, we have a quantity referred to as the failure rate of the’

random variable, given by f(x)/[1—F(x)], where f and F refer to the pdf and the PDF of the
random variable itself. !

One sees that W, is merely the mean residual life of a service time (i.e., the average
remaining service time) (x?/2%) times the probability (p =Ax) that, in fact, someone is
occupying the service facility.

~{1:82) -
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As mentioned above, the best we can do regarding the distributions of
the various performance measures is to give the transforms ass'o?iated
with these random variables. Specifically, then, we recall the de':(ﬁmtlon of
the z-transform for the distribution p« to be Q(z)=Yr-opxz* and find
that it is given through

(—p)1-2z)

B*(A—Az)—z (1.84)

Q(z)=B*(A—Az)
where B¥*(A —Az) is the Laplace transform of the service time density
b(x) evaluated at the point s =X —Az. This last is referred to as the P-K
transform equation for the number in system, and from it we easily derive
Eq. (1.83).7 The Laplace transform of the waiting time pdf is merely

s(1—-p)

£ —
W) = T F 1B 0) (1.85)
and for the time in system we have
()= R* s(1—-p)
S*(s)=B (s)s—)H—/\B*(s) (1.86)

These last two equations are also referred to as P-K transform equations.
Due to the independence of service times, we see that Eq. (1.86) is
related to Eq. (1.85) through the obvious relationship S$*(s)=
B*(s)W*(s), that is, the transform for the pdf of the sum of two
independent random variables is equal to the product of the transforms of
the pdf of each separately. From Eq. (1.85) we easily obtain W in Eq.
(1.82) by differentiation as usual; similarly, the second moment (and
therefore, the variance of the waiting time, denoted by ow’) may be
obtained to give

Ax®
3(1-p)
Because of the Poisson arrival process, one immediately finds that the
idle time I is distributed exponentially, that is,
_ P[I=y]=1-e™
The busy-period duration has a pdf whose transform G™*(s) is given
through the functional equation
G*(s)=B*(s +A —AG*(s)) (1.89)

tFor the case of bulk arrivals as discussed in introducing Eq. (1.68) above, the M/G/1
System gives an expression for Q(z) identical to that in Eq. (1.84), except that B*(s) is
evaluated at the point s =X —AG(z) rather than as above; G(z) is as given for Eq. (1.68).

ol=W>+ (1.87)

(1.88)
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which, in general, cannot be solved. However, we may determine various
moments of the busy period through the moment-generating properties of
this transform, and so, for example, g: (the mean duration of the busy
period) and o’ (the variance of this duration) are given by

_ X
gl—l_p (190)
2 =\2
2o +p(X)
of =T L5 (1.91)

where o, is the variance of the service time. Similarly, the z-transform
for the number served during the busy period, which we denote by F(z),
is given functionally by

F(z)=2zB*[A —AF(2)] (1.92)
with mean and variance for this number given respectively by
_ 1
hl_—l_p (1.93)
(rhzzp(l—P)‘|‘)\2;C_2 (1.94)
(1-p) :

An important stochastic process, which we have so far neglected, is the
unfinished work U(t) in the system at time t. This is a Markov process
whose value represents the time required to empty the system of all
customers present at time f, assuming that no new customers enter the
system after time t; that is, U() is the system backlog expressed in time
units.

For a first-come-first-serve system, the unfinished work also represents
the waiting time of an arrival if it were to enter at time t, and so U(t) is
sometimes referred to as the “virtual” waiting time; in the case of a first-
come-first-serve system with Poisson arrivals . (M/G/1), the unfinished
work has the same statistics as the true waiting time for arrivals. We shall
deal with this function in numerous places throughout the balance of this

- book. For the moment we wish to quote two important results regarding

its distribution. For this purpose we define
F(w,t)=P[U(t)=w] (1.95)
and we may then cite the well-known Takacs integrodifferential equation,

namely,

.9F(w, 1) _9dF(w, t)
at ow

—AF(w, t)+A,[:0 B(w —x)d.F(x, 1) (1.96).‘ g

|
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which defines the transient behavior of the unfinished work distribution.
Defining the double Laplace transform F**(r, s) for F(w, t‘), where r
carries out the transform in the w-domain and s in the t-domain, we have
the following transform equation for this time-dependent behavior:

_ (r/m)e ™o—e ™™
F**(r’s)—)\B*(r)—)\ +r—s (1.97)

Here 7 is the unique root (for r) of the equation s —r+A —AB*(r)=01in
the region Re(s)>0, Re(r)>0, and wo is the initial value of the

“Unfinished work at time 0, that is, U(0)=wo. We make use of these

transient results in Chapter 2.

Much more can be said about the M/G/1 system, but for purposes of
this primer we have said enough. In the natural order of things we should
next consider the system M/G/m, but unfortunately there are very few
substantive results that can be given for this system. On the other hand,
the limiting case for the M/G/x system is itself in some ways a trivial
system since no queueing ever takes place; indeed, a very lovely result for
the number of busy servers (that is the number of customers in the

'system) is given simply by

k

pk =£—!—e‘p (1.98)

We note that this result is independent of the form for B(x), depending
only upon its first moment. Similarly we can immediately write down that
T=x and s(y)=b(y).

It is possible to interpret some of the above transforms as probabilities
using the method of collective marks. The concept is to assume that each
entering customer is “marked” independently with probability (1—z).
Then we may interpret the generating function P(z,t)=E[z""“] for an
arrival process [e.g., for Poisson arrivals, P(z, t) =e"*™"] as being equal
to the probability that no customers arriving in (0,t) are marked.
Similarly, consider any interval whose duration is given by a random
variable X whose pdf has a Laplace transform, say, X*(s); if we further
consider an independent Poisson arrival process (at mean rate A) and ask

~ for the probability P that no arrivals are marked that enter during the

interval X, then P=X*(A—Az). Again consider an interval and an
independent Poisson process as above; let us think of the epochs
generated by the Poisson process as “catastrophes.” If we ask for the
Probability Q that no catastrophes occur in the random interval, then

"Q=X*(\). Thus we are able to give interesting probabilistic

interpretations for many of the basic transform expressions that we

~£ncounter in queueing theory.
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1.8. THE G/M/1 QUEUE

The G/M/1 system is in fact the “dual” of the M/G/1 system.
Surprisingly, G/M/1 yields to analysis more easily than M/G/1 and so we
can quote distributions directly. The system, of course, corresponds to the
case of an arbitrary interarrival time whose PDF is given by A (t) and with
pdf a(t) the transform of which is denoted by A*(s); service times are
distributed exponentially with mean 1/pu.

The basic recurrence relation that governs the behavior of G/M/1
(and also G/M/m), similar to that for M/G/1 given in Eq. (1.81), is.

qni1=qnt+1—vh4 (1.99)

where g, is the number of customers found in the system by C, and v,
is the number of customers served between the arrival of G, and G,...
The sequence {q.} forms a Markov chain. Many of the G/M/m results
follow from this equation.

All our results are expressed in terms of a root o that is the unique root
in the range 0=0 <1 of the functional equation

o=A*u—po) (1.100)

Once o is evaluated, the following results are immediately available. The
distribution for the number of customers found in the system by a new
arrival is given by

r=(1-o)o* k=0,1,2,... - (1.101)
The PDF for waiting time is given by

W(y)=1-ge™0"» y=0 (1.102)
and the mean waiting time is

a

W=u(1—0)

(1.103)
It is remarkable that the waiting times are exponentially distributed,

independent of the form of the interarrival time distribution (except
insofar as it affects the value for o).

1.9. THE G/M/m QUEUE

In contrast to the M/G/m system, we find that the G/M/m system does
in fact yield to analysis, the results for which we quote in this section. The |
G/M/m system, of course, has arbitrarily distributed interarrival times and .- |

a single queue served first-comefirst-serve by m servers, each of which
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pas an exponentially distributed service time of mean 1/.;1,. As with the
system G/M/1, o is a key parameter and in this case it is found as the
unique solution in the range 0= o <1 for the equation

o=A*mu—mpao) (1.104)

We have that the distribution of queue size found by a new arrival,
conditioned by the fact that this arrival must queue, is given by

P[queue size = n | arrival queues]= (1 ~o)o" n=0 (1.105)

We note here as with the G/M/1 system that the queue size is
geometrically distributed. As earlier, we define r as the probability that a
newly arriving customer finds k in the system ahead of him; in terms of
these probabilities we define

rdJ Osk=m-2

= 1.106
Rk {o_kfm—rl m_2<k ( 0 )

We must evaluate J and the m—1 terms R, for 0=k=m—2. The
equation for J is given by

J= 1 (1.107)
[1/(1-o)]+ k; R.

and the values for the terms R are given through the set of equations

m—2 00
Ry — Z Ripik - Z (TH-l_mpik
R = S e (1.108)
Pr-1x

where the transition probabilities p; are nontrivial and are calculated
through the following four equations, depending on the range of the
subscripts i and j:

py=0 j>i+1 (1.109)

Py = I“(i T 1>[1 e e A j=it+l=m  (1.110)
0

,B,,:pm_n:r (_m_M't_)"e—mwdA(,) O=n=i+l-mm=i (1.111)
’ ¢ n!

=0

j<m<i+1

. (1.112)
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(Who said it would be easy!) Once these constants are evaluated we may
then calculate the average waiting time as

Jo

= =o) (1.113)
The PDF of the waiting time is given through
—mp(l—a)y
W(y)=1-—7%° y=0 (1.114)

m—2
1+(1-0)), R
k=0

Whereas these last two equations require the calculation of difficult
constants, the waiting time pdf conditioned on the fact that the customer
must queue is simply given by

w(y | arrival queues)= (1 —a)mue ™" y=0 (1.115)

This only requires the calculation of o. Note that even for the G/M/m
system we have an exponentially distributed conditional waiting time.

1.10. THE G/G/1 QUEUE

Advanced queueing theory deals with the system G/G/1 and things
beyond (for example, G/G/m, about which we can say so very
little—recall that even the system M/G/m confounded us). In this section
we give some of the principal well-known results for G/G/1 and describe
a method of attack that sometimes yields the required solution or at least
some simplified measures of performance. In addition we present a point
of view that describes the underlying operations involved in solving the
G/G/1 system.

As mentioned in the first section of this chapter, the random variables
that drive any queueing system are the interarrival times t. and the
service times x.. In the general formulation of the G/G/1 system, we find
that these random variables do not appear separately in the solution but
in fact always appear as a difference; thus we are led to consider a new
random variable associated with the nth customer C,, namely,

Un = Xn —tar1 (1.116)

This random variable represents the difference between the amount of*

work (x.) that C, demands of the system and the “breathing space” (t.+1),

or time, between the arrival of this demand and the arrival of the next™ |
demand by C,..; hopefully this difference will be negative on the average ' ]
so that there will be more breathing space than load on the system. In fact  }
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if we take the average of Eq. (1.116) we find
Elu.]=t(—1) (1.117)

which, first of all, is independent of n (as we expected) and, second, will
have a negative mean value so long as p < 1; this is no different than

" requiring that R<C if our system is to be stable. Associated with the

random variable u., whose generic form we now write as ii, we have its
PDF C(u), its pdf c(u) and the Laplace transform of this pdf, which we
denote by C*(s). Expressing these last two in terms of the pdf’s and

‘ 'Ijaplace transforms thereof for the interarrival time and service times we

have
c(u)= j b(u+1)a(t) dt (1.118)

and
C*(s)= A*(—s)B*(s) (1.119)

The integral in Eq. (1.118) is, of course, the convolution integral between
a(-u) and b(u), which we henceforth denote by c(u)=a(-u)®b(u).
Thus once we know the interarrival time and service time pdf we also
have the pdf for our random variable i.

Of basic interest to the G/G/1 system is the behavior of the waiting
time w, for customer C.. This random variable is related to others in the
sequence through the following difference equation, in which we see the
basic role played by the random variable u.:

Wner =max [0, w, + U, | (1.120)

This is the key defining equation for G/G/1 [as was Eq. (1.81) for M/G/1
and Eq. (1.99) for G/M/m]. The sequence {w,} forms a (continuous-time
continuous-state} Markov process (in fact, it is an imbedded Markov
process). The maximum operator shown above is often rewritten in the
following fashion: (x)*=max (0, x). In the case of a stable system (p <1)
there will exist a limiting random variable representing the equilibrium
waiting time, which we denote by w. It can be seen from Eq. (1.120) that
W must have the same distribution as (W +ii)*; the pdf that satisfies this
condition will be the unique solution for the waiting time pdf. Let us
denote the pdf for w. by w.(y). The (nonlinear) functional equation that
defines this pdf is given through :

Wasi(y) = m(wa(y) ®c(y)) (1.121)

Where @ is the convolution operator and 7r is a special operator that modifies

the pdf of its argument by replacing all of the probability associated with
Negative values of y (the argument of the pdf) with an impulse at y =0
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whose area equals this probability. The pdf w(y) for our limiting random
variable w must, from Eq. (1.121), satisfy the following basic equation;

w(y)=m(w(y) ®c(y)) (1.122)

whose solution will be the equilibrium density for the waiting time in
G/G/1. Equation (1.122) states that this equilibrium pdf must be such
that when it is convolved with c(y) and when the resulting density has all
of its probability on the negative half-line moved to an impulse at the
origin, then we must have a resulting pdf that is the same as the w(y) with
which we began. R

Another way to describe the random variable W is through the
equation

w =sup U, (1.123)

n=0

where U, =ue+ur+- - +u.—1(n=1) and U,=0.
A random variable related to w, that forms the “other half” for w, is

y» =—min [0, w, +u, ] B (1.124)
Thus we see that
Wis1 = Yn = Wy + Up (1.125)
Taking expectations of this equation in the limit as n — o, we obtain
y=~1 (1.126)

Another defining relationship for the waiting time PDF is given by
the well-known Lindley’s integral equation:

Yy

W(y) = Jlm W(y~u) dC(u) y=0

0 y<0

(1.127)

This equation is of the Wiener-Hopf type. We now let ®.(s) denote the
Laplace transform for the waiting time PDF W(y); note that this is the
transform for the PDF and not for the pdf w(y), whose transform we had
previously denoted by W*(s) and which is related to this new transform
through the equation W*(s) = s®.(s). We wish to solve for ®.(s). The
procedure we are about to describe is formally correct for those G/G/1
systems for which A*(s) and B*(s) may be written as rational functions of
s. In this case our task is to find a suitable representation of the following
form: :

¥ (s)

A*(—5)B*(s)—1 =223 (1.128)

T_(s)
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where for Re (s) >0, ¥.(s) must be an analytic function of s that contains no
zeros in this half-plane; similarly, for Re (s)<D, \P_(s? r.nust be an a1'1a1yt1c
function of s and be zero-free (where D >0). In addition, we require for
approaching infinity that the behavior of W.(s) should be ¥.(s)=s for

|S| y>0 and that the behavior of ¥_(s) should be V¥_(s)=-—s for

Re(s

" Re(s)<D. Having accomplished this “spectrum factorization” we may

write our solution for d.(s) as
C.(8)=F (o) 1.129
+() V. (s) ( )

where the constant K may be evaluated through

K =lim 24(8) (1.130)
s—0 §
This constant represents the probability that an arriving customer need
not queue. We note that once we have found ®.(s) then we have .found
the transform for the waiting time PDF, which is what we were seeking.
Although we have described a procedure above for calculating th.e
waiting time pdf,: we have not been able to extract the properties of this
solution and in fact we have not even given an expression for the average
waiting time W in the G/G/1 system. Sad to say, this quantity is, in
general, unknown! Its value can be expressed, however, in terms of othejr
system variables as follows. For example, the average waiting tin.le is
simply the negative sum of the mean residual life of the random variable
it and of § (which is the limiting random variable for the sequence y»);
that is,

wo_W_ Yy (1.131)

It can be shown that the mean residual life for ¥ is exactly equal to the
mean residual life for the random variable I, which denotes the length of
an idle period in G/G/1; this last observation coupled with the easy
evaluation of the first two moments of the random variable it yields the
following expression for the mean wait in G/G/1:

_ol+o’+(®A-pY T
- 21(1—p) 21

Where ¢, and o’ are, respectively, the variance of the interarrival time

W (1.132)

- and service time. We shall make use of this last formula in evaluating

bounds on the mean waiting time in Chapter 2.
We include no exact results for the G/G/m queue, but refer the reader
to the approximations and bounds in Chapter 2. An elegant approach to
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the exact analysis of G/G/m has been given by Kiefer and Wolfowitz
[KIEF 55] involving the (usually impossible) task of solving an integral
equation (which reduces to Lindley’s Integral Equation for G/G/1). More
recently, de Smit [DESM 73] has extended the theory due to Pollaczek
[POLL 61] for G/G/m and has elaborated upon the G/M/m and G/Hx/m
queues.

This completes our very rapid summary of the elements of queueing
theory. We will need much of this material in the following chapters. It
should be clear that a number of important behavioral properties for
these queueing systems remain as yet unsolved. Nevertheless we are faced
in the real world with applying the tools from queueing theory to solve
immediate problems. The balance of this textbook discusses such
problems and methods for applying the theory developed. Consequently,
we begin with a rather advanced chapter in queueing systems where the
goal is not to extend the rigorous theory as summarized here but rather to
find effective approximation methods that permit one to use the theory in a
true engineering sense.
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2

Bounds, Inequalities,
and Approximations

An exciting “new” branch of queueing theory is emerging that deals
with methods for finding approximate or bounding behavipur for
queues.® It is not hard to convince oneself that queueing theory is rather
difficult and that exact results are hard to obtain; in fact, many of th-e
interesting queueing phenomena have not as yet yielded to exact analysis
(and perhaps never will!). Moreover, in those simpler systems where exact
results can be obtained, their form is sometimes so complex as to render
them ineffectual for practical applications.

If one examines why we study queueing theory in the first place, one
readily admits that it is to answer questions regarding real queues i‘n the
real world. The mathematical structures we have created in attempting to
describe these real situations are merely idealized fictions, and one must
not become enamoured with them for their own sake if one is really
interested in practical answers. We must face the fact that authentic
queueing problems seldom satisfy the assumptions made throughout most
of the literature available on queueing theory: stationarity is rare,
independence occurs only occasionally, and ergodicity is not only unlikely
but is also impossible to establish with measurements over a finite time!
Therefore if our mathematical models are so crude, we should be willing
to accept much less than an exact solution to the systems of equations
they give rise to; rather, we should be happy to accept approximate
solutions to these “approximate” mathematical models and hope that
such solutions provide information about the behavior of real-world
queues. Even more important is the search for “robust” qualitative

" behavior of queues which provides “rules of thumb” for estimating the

. *Perhaps the first approximations used in queueing theory date back to Erlang himself

through his introduction of the method of stages (see [KLEI 75], Section 4.2); he tried to
approximate the underlying distributions of a queueing system with tractable analytic
functions. The reader is referred to [SYSK 62] and to the elucidation of Erlang’s work and
€ra in [BROC 48] for some of the historical flavor.
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