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the exact analysis of G/G/m has been given by Kiefer and Wolfowitz
[KIEF 55] involving the (usually impossible) task of solving an integral
equation (which reduces to Lindley’s Integral Equation for G/G/1). More
recently, de Smit [DESM 73] has extended the theory due to Pollaczek
[POLL 61] for G/G/m and has elaborated upén the G/M/m and G/Hx/m
queues.

This completes our very rapid summary of the elements of queueing
theory. We will need much of this material in the following chapters. It
should be clear that a number of important behavioral properties for
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these queueing systems remain as yet unsolved. Nevertheléss we aré faced

in the Feal world with applying the tools from queueing theory to solve
immediate problems. The balance of this textbook discusses such
problerfxs and methods for applying the theory developed. Consequently
we b'egm with a rather advanced chapter in queueing systems where thé
goal is not to extend the rigorous theory as summarized here but rather to
find effective approximation methods that permit one to use the theory in a
true engineering sense.
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Bounds, 'IneAqualitie_s,
and Approximations

4

‘An exciting “new” branch of queueing theory is emerging that deals
with methods for finding approximate or bounding behaviour for
queues.* It is not hard to convince oneself that queueing theory is rather .
difficult and that exact results are hard to obtain; in fact, many of the
interesting queueing phenomena have not as yet yielded to exact analysis
(and perhaps never will!). Moreover, in those simpler systems where exact
"~ results can be obtained, their form is sometimes so complex as to render
them ineffectual for practical applications.

If one examines why we study queueing theory in the first place, one
readily admits that it is to answer questions regarding real queues in the
real world. The mathematical structures we have created in attempting to
describe these real situations are merely idealized fictions, and one must
" not become enamoured with them for their own sake if one is really
interested in practical answers. We must face the fact that authentic
queueing problems seldom satisfy the assumptions made throughout most
. of the literature available on queueing theory: stationarity is rare,
independence occurs only occasionally, and ergodicity is not only unlikely
but is also impossible to establish with measurements over a finite time!
Therefore if our mathematical models are so crude, we should be willing
to accept much less than an exact solution to the systems of equations
they give rise to; rather, we should be happy to accept approximate
solutions to these “approximate” mathematical models and hope that
such solutions provide information about the behavior of real-world
queues. Even more important is the search for “robust” qualitative
behavior of queues which provides “rules of thumb” for estimating the

*Perhaps the first approximations used in queueing theory date back to Erlang himself
through his introduction of the method of stages (see [KLEI 75}, Section 4.2); he tried to
approximate the underlying distributions of a queueing system with tractable analytic
functions. The reader is referred to [SYSK 62] and to the elucidation of Erlang’s work and
era in [BROC 48] for some of the historical flavor.
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behavior of complex systems. An excellent example of successful robust
models is given in Chapter 4, where we apply Markovian queueing
networks to multiaccess computer system modelling; Buzen [BUZE 74]
discusses the way in which system structure can be used to generate
simple robust models. A second example is the use of diffusion
approximations in a variety of applications (see Sections 2.9, 4.13, and
4.14). A third example is described in Chapter 5 in which a robust model
is developed for computer network delay. All three of these examples
demonstrate the success in the use of simple (often Markovian) models to

predict behavior of rather complicated real-world systems. Tssiies such as™

these are addressed in this chapter and we emphasize that this approach
to the study of queues is relatively new and potentially highly rewarding,
The chapter is organized as follows. We begin by establishing a robust
approximation for the distribution of queueing time in the G/G/1
heavy-traffic case (p— 1 from below). This approximation lurks just
beneath the surface of many of the results we have already seen. A tight
upper bound on the average wait W is then established from first
- principles (good for 0=p < 1); lower bounds for W are more difficult to
come by and certain available results are presented. (It is sad but true that
even W cannot be expressed exactly in terms of the simple system
parameters for the G/G/1 queue!) We also give a bound on the tail of the
waiting time distribution in Section 2.4. Most of the results in the first
four sections were inspired by the work of Kingman [KING 61, 62a, 62b,
64, 70] and pursued by Marshall [MARS 68c], Brummelle [BRUM 71,
73}, and others [SUZU 70, MARC 74]. A simple discrete approximation
for the G/G/1 system is then presented in Section 2.5 using techniques
from elementary queueing theory. Next we make a few remarks
concerning bounds on W for G/G/m. At this point in the chapter we
abandon our former approach of attempting to find approximate solutions
to the given system equations and take the point of view that we will
approximate the stochastic processes themselves (that is, the arrival and
departure processes). We begin with a “first-order” approximation
whereby stochastic processes are replaced simply by their average values
(perhaps time-dependent) and this leads us to the fiuid approximation for
queues. Next, we study a “second-order” approximation in which a
stochastic process is represented both by its mean and its variance, and
this gives us the diffusion approximation for queues. This diffusion
approximation refines the fluid approximation by describing the
time-dependent processes with means given by the fluid approximation
but with a normal (Gaussian) distribution describing the fluctuations
about that (possibly time-varying) mean. In the case of stable queues
(p<1) the limit of this diffusion approximation as t-»« is in fact the
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- ¢ approximation of Section 2.1! These are related because 'th_e
ieét‘llzic:rrlaf:)prc?)gmation assumes that the queue never empties, and th1_s is
ust the kind of approximation made in the heavy-tral_‘ﬁc case. Following
his, a careful discussion of the diffusion appro'xxmatlox? for the M/G/ 1
ueue is given. These methods are then applied to give approximate
olutions to the “rush-hour” behavior so common in practl‘cal life. The
iffusion approximation methods have been studied by various workers
cluding Newell [NEWE 65, 68, 71], Gaver [GAVE 6§], Iglehart and
hitt [IGLE 69], McNeil [McNE 73] and Kobayashi [KOBA 74a,

-2.1. THE HEAVY-TRAFFIC APPROXIMATION

In this section we study the behavior of the system G/G/1 in t_he
edvy-tr'aﬁic case [KING 62a]. This is the case wher:e p=1 (but remains
trictly less than one, preserving stability). We es.ta}bhsl'l the .cen.tral _resglt
- for heavy-traffic theory, which states that the walylng time dlstl'lbl%tlop is,
s an approximation, exponentially distributed with th‘e mean wait given
y (02" +0v°)/2(1 — p)T. This is a remarkable result and it pe.rvades most of
“our approximation methods. (It is valid when the denominator is small
‘compared to the square root of the numerator.) . ,

Our point of departure in establishing the central result is Eq. (1.128)
“repeated below:

A*(—5)B*(s)—1 = Zxls)

0 @1

We will examine this expression in the case p=1. *Let us begin by
considering the Taylor series expansion for B*(s) and A*(—s) as follows:

0 sk
B*(s)= ¥, 17 B*“(0) 2.2)
: However, from Eq. (1.17) we know that B *0(0) = (—1)*x¥; using this and
considering B*(s) near the origin (s — 0), we havet

x2

2
B*(s)=1—'5€'s+—zs! +0(s?%) (2.3)
Siinilarly, we have
25° 2
A¥(—s)=1+Ts +—-2!—+o(s ) (2.4)

T As usual, the notation o(x) denotes any function which goes to zero faster than x, that is,
“lim, ., [o(x)/x]=0.
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Now, since we are considéring the heavy-traffic case, we recognize that
our interest must lie in the distribution of large waiting times. Recall that
the waiting time distribution, W(y), has a Laplace transform D (s),
whereas the density, w(y), has a transform W*(s) = s®.(s). It can be seen
that the behavior of W(y) for large values of y is governed by that pole
(singularity) of ®.(s) which has the smallest Re (s) in absolute value; this
follows since the decay rate of each exponential term in w(y) or W(y) is
inversely related to the (negative) real part of the pole associated with
that term. The expression in Eq. (2.1) has a zero at s =0 and in fact, has
an additional zero near s =0 for the heavy-traffic case; as-we’shall sé¢;”
this additional zero forms the pole of ®.(s) that governs the behavior of
large waiting times (this is merely the final-value theorem for Laplace
transforms).t Let us find this nearby zero (which has a small but negative
real part). Using the expansions in Egs. (2.3) and (2.4) we have
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x%s? t’s? 2

A*(—s)B*(s)—1=<1-fs+ 5 ><1+fs+7)—1+o(s)

=1+s(f—%)+ 2(Z+E—'f)—1+o( )
sE=2)+s’(F+3 s

_ L (¥ 2
=s{ T—X+s 7+—2~—xf +0(s?) (2.5)
From this last we clearly see the root at s =0. Solving for the second root
in the vicinity of s =0 we first note that

x2

x- ot ot (x—1)°
2

2 2
Since p=1, we choose to assume at this point that the last term on the
right-hand side of Eq. (2.6) (the squared difference of the first moments)
is negligible compared to the first term in that equation (the sum of the
variances). Using Eq. (2.6) under this approximation and dropping o(s?)
(since we are examining the vicinity of the origin), we may then solve Eq.
(2.5) for our second root (which we denote by so) as

I
oo 2.6)

2 2
A L to. =0
which yields
_2i(1-p)

2 2
Ta +(Tb

@2.7)

T One can already see the exponential approximation emerging from this single critical pole.
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learly so< 0. Note from this and Eq. (2.5) that so is (approximately) the

verse of the mean residual life (see footnote on p. 16).o.f the random

ariable @i =% —f Thus, as an approximation near the origin, we have
((J'a2 + O'bz)

A*(—s)B¥*(s)—1=5(s —50) e

eturning to our direct argument now, when s is near the (_)rigil} we may

‘then use the expression in Eq. (2.1) and arrive at the approximation

W, (s)=s(s jSo)C

d to our solution for
here C=Y_(0)[o.>+0,")/2. In order to procee r fo
' ®.(s), we see from Eq. (1.129) that we must evaluate the constant K; this
‘we do by using Eq. (1.130) as follows:

(2.8)

K= ling (s — 50)C =~50C

.which then gives from Eq. (1.129)

—So

D.(s) Em

The unknown constant C cancels!) Making a partial fraction expansion
“we have

1
$ —3So

()= -

Finally, using the expression for s, this inverts to give

W(y)El—eXP<————£2t_(1# )y)

2 2
Ta +O'b

m (2.9)

This last gives us an approximation for the distribution of waiting tim'e in
‘the vicinity of large waiting times for p=1. The factor. So is given
pecifically through Eq. (2.7). We note that the average wait W is given
y (—1/s0) and so

. (O’a2+ O'h2)
. T2(1-p)t

Equations (2.9) and (2.10) form the central results for heavy—traﬁic
heory as applied to G/G/1. These results arf:'extrf:mely robust andzgi\(r)e
he general behavior of queues with long waiting times. I'*‘r'om ]_Eq. ( .10)
¢ see that the numerator contribution to the average waiting time is due
o fluctuations in the arrival and service processes, whereas the
enominator (which dominates in the heavy-traffic case) depends only on

w -mm (2.10)
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first moments (in particular, on p). The exponential character of these
large waiting times is in some sense a central limit theorem for queueing
theory and we shall see it appear again in our diffusion approximations
below *

2.2. AN UPPER BOUND FOR THE AVERAGE WAIT

The heavy-traffic approximation studied in the previous section leads to
an exponential distribution of large waiting times whose mean is given by
Eq. (2.10). In this section we are interested not in an approximation, but-

in a firm upper bound on the average wait W in the system G/G/1.
The following development is simple and is due again to Kingman
[KING 62b]. We recall from Section 1.10 that the limiting random
variable W must have the same distribution as the random variable
(W +1)*. Therefore, assuming the following moments exist, we must have

E[(W)"]= E{[(W +@)*]%} (2.11)
Let us introduce the definition
(X)"£—min[0, X] (2.12)
Then, recalling that (X)* 4 max [0, X] we have the simple relationship

X=(X)"-(X)" (2.13)
and it must also be true from their definitions that
X)(X)y =0 (2.14)

Squaring Eq. (2.13) and using Eq. (2.14) we then see that )
X2 =[(X)'P+[(X)F (2.15)
Taking X to be a random variable, we may form expectations in Eq.
(2.13) to yield
X=X)"-(X)7
And likewise, from Eq. (2.15) we have

X =[O T+X) T

(2.16)

* Queues in series have also been studied by means of the heavy-traffic approximation
[HARR 73]. Again it is shown that the total waiting time is asymptotically distributed in a
way depending only on the mean and variance of the interarrival and service time
distributions. When all variances are identical, then it is shown that the waiting time
distribution is an exponential function of these moments.
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Since ox*=X>—(X)?, we may use the above relationships to yield

0%’ = o+ o +2(X) (X)” (2.17)

i i iable X.
his last result is true for any random variab o
T Now taking X =W +ii, we see from Eq. (2.16) that X = w +1i is given

by

WHa=W+a) —(%+a) (2.18)
ﬁd@ever, from Eq. (2.11) (with k =1) we have w =(W—+a)T, and so Egq.
(2.18) may be rewritten as*

di=—-(W+a)
Furthermore, from Eq. (2.11) we have that
‘ (2.19)

Once again, taking X.= W +ii we see that the ter.m a-?{¢)+ f'rom Eq. (2.17)
may be set equal to 0w’ due to the relanonshlp in Eq. (2.19).
'Furthermore, since w. and u, are independent, it must be that
olarn = 0% +0q’, and so Eq. (2.17) finally takes the form

2
O'V-vz = O w+a)*

05+ 08 = 05’ + ol +2(W i) (W i) (2.20)

Reg arding the last term in this equation, we have already establisl.led that

(W+i)" =w and (W +ii) = —a; using these and canceling the variance of
W from both sides of our last equation, we have

03’ =0~ —2Wil (2.21)

: ‘By definition ii =% —F7 and so, as we have seen many times before,
U= 1(p—1); similarly, since ¥ and f are independent, it must- be that
o = o/ +0¢. However, we already have notation for the variance to
interarrival time and variance of service time, namely, oa’ anfi oy,
i‘;espectively. With these observations, and solving for w (which, in the

Past, we have written simply as W) we may rewrite Eq. (2.21) as follows:
‘ _Ota’ ok
" 2t(1-p) 2%(1-p)

Since variances are always non-negative, we may drop the last term in
this equation and thereby create our final upper bound on the average

¥ We point out that the limiting random variable §=lim,_.y, must have the same
distribution as (% + )", as may be seen from Eq. (1.124).
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waiting time:
2 2
g + 0o
W==—r———r 2.22
2t =p) - (2.22)

This result is correct for 0=p <1 and improves (is asymptotically sharp)
as p — 1.* This result is familiar! It is, in fact, the mean waiting time that
we obtained in the previous section for the heavy-traffic approximation.
What we now see is that the heavy-traffic approximation to the mean wait
forms a strict upper bound for the mean wait in any G/G/1 queue. In
Section 1.4 we boldly stated that the behavior of the mean waiting’ time
for the queue M/M/1 was typical of most queueing systems in that the
dominant behavior is due to a simple pole at p=1; we have now
confirmed that statement by our basic results in this and the previous
section. : '

Our upper bound is essentially distribution-free in that it depends only
on the first two moments of the service and interarrival time; this
simplicity is a key virtue since often we are willing to specify only some
gross properties of the input (e.g., mean and variance). Unfortunately,
this simplicity does not extend to the lower bound, which we discuss next.

2.3. LOWER BOUNDS FOR THE. AVERAGE WAIT

The simple upper bound obtained in the last section may also be
derived easily (see Exercise 2.6) from Eq. (1.132), which we may express
as follows: .

r

— Wo 4+ F(1—p)—
W—Wu+2f(1 p) ﬁ

(2.23)

* We note that the upper bound exceeds the known exact mean wait for M/G/1 [as given by

the P-K mean value formula in Eq. (1.82)] by (X +¥)/2, which is less than one interarrival . .

time. Marchal has proposed that the upper bound in Eq. (2.22) be scaled down so that it is
exact for M/G/1; thus his approximation is

1+C.? [0:,2+a1,2]

Wyl aii-p)

where C,, the service time coefficient of variation, is defined as C, =a,/%. Both he
[MARC74] and Gross [GROS 73] consider the effectiveness of this (and other)
approximations to W. Their numerical studies show that the fit to G/M/1 is good, so far as
percentage error is concerned; for G/G/1 it is fair, degrading with an increase in the
coefficient of variation of either the interarrival times or the service times, and improving as
_p increases.
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here we have defined Wy to be our upper bound
2 2
AT + oy (2.24)
Wy 2t(1—p)

e also had an alternative expression for the mean wait 'equivalent to
that given in Eq, (2.23) and expressed it as Eq. (1.131), which we repeat

“here:

' o2
s, £ —__L—-X—
W= %5

o5 (2.25)
These last two expressions for W form our point of departulie in
establishing lower bounds on the mean wait in G/G/1. It is clear that if we
"are to obtain such lower bounds, then we must place an upper bound on
2121, which is the mean residual life of the idle time period L ‘We have
_already introduced the random variable §=(Ww+1ii) [see Sectlpn 1.1.0,
“Eqgs. (1.124), (2.12) and the footnote on p. 33] whose mean res1dua‘11 life
‘15 shown in Exercise 2.6 to be equal to that of the idle time, that is,

R
I
S

.and since y> =0y +(§)?, we see that our main task is to place an upper
bound on the variance of ¥; in this endeavor we follow the approach of
Kingman [KING 62b]. First recall from Egs. (1.116) and (1.126) that

t1-p)=—u=% (2.26)

Now, since ¥ has the same distribution as (w+i1)", and furt}lerr?or?, since
Ww=0, then from a stochastic point of view,* w+id=i# and
(W +ii)"=<(@)"; thus we may write
: @ =lw+a)y F=[@)T

Finally,
y=[@T
Using this last and taking advantage of Eq. (2.15) (with X =1#i) we may
_also write

y' =@’ -[@7T

To say that a random variable X, is stochastically smaller than X, means that
" P[X,=x]=P[X,=x]
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which upon application of Eq. (2.26) yields

%5 (2.27)
So, finally, we substitute back into Eq. (2.25) and establish the following
lower bound on the average waiting time:*

a [@)°F
WK—Z——-f(l_p)sW
This is the first of our lower bounds. We note that it depends on much
more than just the first two moments of our input process. This is not an
especially tight bound, and in order to do better, we must place
conditions on our arrival process, as we shall see later.

Marshall [MARS 68a, b] has established a lower bound on W different
from that given in Eq. (2.28). This new bound is an improvement over the
other (Wx) in the light-traffic case, and the converse is true in the
heavy-traffic case. To establish this new bound, our point of departure is
once again the basic relationship

Wes1 =max [0, w. +u, ]

This piecewise linear expression takes on
Un <—wn; therefore, if we condition on the event w, =y =0, then any
calculation for the expected value of w,.,; need only consider the range
for which u, =—y, and in this range it must be true that w, ., = y +u. We
may therefore form the conditional expectation on w,.; as

the value zero whenever

-

E[Waii | we =y]=f (y+u) dP[u, <u] (2.29)
: um—y

Recall that P[u, < ul=C(u). Integrating by parts, it is easy to show that
the integral in the following equation is identical to that in Eq. (2.29),
namely,

E[wnii|w, = y]=J:_y[1 -C@u)]du (2.30)

this being good for all

y =0. It is convenient to define g(y) as the integral
above, that is, :

&2 [ T1-cw)du

¥ We use the notation Wi for this lower bound since it is due to Kingman.

- (2.28) ]
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NO\;V let us show that g(y) is convex.* We observe that the PDF C(u) %s
‘nondecreasing with u (for all u in the range '—oos u=o), a.nd so C(—u) is
ponincreasing with u; therefore, 1— C{—~u) is nondecreasing with u. We
‘also have

Mz.l_c(_y) (2.31)

dy
-Dué to the property for 1—C(-u), we see that dg(y)/dy is nondecreasing

with y; thus g(y) is convex. ‘
'Eéty us now proceed with the calculation of W. We define

W.(y) £ P[w, <y]. Unconditioning Eq. (2.30), we then have

E[wnu]= f:E[w..;l [w, =y]1dW.(y)
= f i f[l—~C(u)] du dW, (y)

- [ awaty)

Thus

E[war]=E[g(w.)] (2.32)

where the expectation on the right-hand sifie of this equation is with
respect to the distribution of the random vgmable W However, %Nhe have
already shown that g(y) is a convex function of its argument. Chus wc;
may apply Jensen’s inequality, which states, for any convex function g o
a random variable X, that we must have

E[g(X)]=g(E[X]) (2.33)
From Egs. (2.32) and (2.33) we therefore have

E[wn]=g(E[w.]
If we allow n — o we obtain

W=g(W) (2.34)

Let us now consider the equation y = g(y), that is,

V= r[l ~C(w)] du (2.35)

-y

= That is, for y,<y, and 0=« =<1, g(y) will be shown to have the following property:
glox, +(1—a)x) < ag(x,) + (1 ~a)g(x,)

. This is equivalent to requiring that dg(y)/dy be nondecreasing.
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where y=0. We are interested in the value of y that satisfies this
equation since, as we shall see, this value will be our lower bound, which
we denote by W (the subscript reminds us that it is due to Marshall). We
may rewrite Eq. (2.35) as

BOUNDS, INEQUALITIES, AND APPROXIMATIONS

o
y= L“ ~Cw)] du+g(0) (2.36)
for y=0. In Figure 2.1 we show y and g(y) versus y. Note that
g(0)=1—-C(07)=P[u. =0]=0. We see that a solution to Eq. (2.35) will
be obtained if and only if the two curves shown in Figure 2.1-interséct; of
course this point of intersection is Wi, Let us next show that these curves
cross exactly once (for y=0) and therefore Wi, is unique. We note from
Eq. (2.36) that for g(0)=0, y = 0 = Wy will be a solution (and if Wy is to
be our lower bound on W, then this value is useless). Moreover, if

g(0)>0, then the two curves will cross if and only if for sufficiently large y
we have

y>g(y)
=gO)+ j_j[l ~C(u)] du

=5(0+y~ [ Cli du

&)

g(0)

0 Wy

Figure 2.1 Location of the lower bound W,,.
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'his last condition reduces to
- 0
g(0)< j C(u) du (2.37)
-y

Now, as y — o, this last integral is simply

: 0

[ cw) du=-Etmin (0, u)}= E[(w) )
Eﬁrgpermore, g(0) may be written as

8= [ T1-cldu
= E[max (0, u.)] -E [(un)']

E[d]=E[(u.)"1= E[(u.)7]
— g(0)— J._wC(u) du

But E[ti]= —f(1-p), and so as y—, the condition in Eq. (2.37) is
squivalent to the condition

tp—1)<0

p<l1 (2.38)

- The condition expressed in inequality (2.38) is the condition that
= guarantees that both curves cross and thereby guarantees a (nontrivial)
~solution to Eq. (2.35); however, inequality (2.38) is our usual condition
for stable queueing systems! Moreover, since we have just shown (for
1p<1) that

lim(y —g(y))>0

ind since g(y) is a convex function, these curves will cross exactly once [if
hey crossed more than once, then by the convexity of g(y) they would
ross exactly twice, and the last inequality above would have to be
eversed—a contradiction]. However, one might inquire whether these
Wo curves can coincide over some interval (a <y <bh), say. This would
equire that dg(y)/dy =1 over this interval. However, due to Eq. (2.31)
ur assumptions would then also require that 1-C(~y)=1 over this
egion. But the function 1—-C(—y)=<1 and is nondecreasing with vy,
hereby requiring that dg(y)/dy =1 over the entire range (a <y). Thus
e come to the conclusion that if the curves coincide over any finite
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interval, then they must coincide over a semi-infinite interval and will 3

never separate from one another; however, condition (2.38) guarantees

that they will separate. We have thus arrived at a contradiction, thereby

removing the possibility of the two curves coinciding over any finite
range. ,
Thus, for p<1, Wy is the unique solution to Eq. (2.35). Now, if
Wy =0=g(0), then clearly W = Wy, On the other hand, if Wy>0, then
g(0)>0 as shown above, and therefore for all 0=y < Wy we have that

y <@+ [ [1-Cu) du

due to the uniqueness arguments given above (see also Figure 2.1).
Suppose now that W < Wy; in this case we would then be able to write .

W< g(W) (2.40)

since W would fall in the range for which Eq. (2.39) holds. However, Eq.
(2.40) directly contradicts Eq. (2.34), and therefore we conclude that

Wu=sW m (2.41)

which finally establishes the lower bound we were seeking. The value for
the lower bound W, is given as the unique solution to Eq. (2.35).
Comparing this calculation with that required for Kingman’s lower bound
Wx, we see that they both require nontrivial computations.

We comment here that in Exercise 2.7 we show by methods similar to
those described above that upper and lower bounds on the variance of the
waiting time may be given as

= 0w <0+ 02— 2Wui(1—p) - (2.42)

If we are willing to place some simple constraints on the interarrival
time distribution A (¢), then we find that we can simplify the lower bound
on the average waiting time considerably. These constraints require that
we define certain properties of the mean residual life and of the failure
rate of distribution functions; the mean residual life and failure rate were

defined in the footnote on p. 16. The following definitions are commonly
used in reliability theory [BARL 65].

DEFINITION OF v-MRLA (anp y-MRLB): A nondiscrete distribution
function F has its mean residual life bounded above (below) by v
[and is then said to be y-MRLA (y-MRLB)] if and only if

“1—F(u)
[ T=F() ™

=

(2)7 (2.43)

for all ¢t and 1-F(t)>0.
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: : iscrete distribution F
pERINITION OF DMRL (anp IMRL): A nQndlscrete .
has decreasing (increasing) mean residual life DMRL (IMRL) if and

only if

du decreases (increases) with t (2.44)

J‘”I—F(u)
1 I_F(t)

A nondiscrete distribution function F
haéyincreasing (decreasing) failure rate IFR (DFR) if and only if for
any £ >0 we have that

F(t+e)—F(t) .

1—FQ) increases (decreases) with ¢ (2.45)

for all t>0 and for 1—-F(t)>0.,

- The first definition merely describes distributions whose mean residual
i e may be bounded independent of the age of the random varia.ble. Tpe
second definition describes distribution functions whose mean residual 1.1fe
behaves monotonically with the age of the random variable. The third
lefinition describes distribution functions whose death rate (failure rate)
behaves monotonically with age. It can be shown that

IFRcDMRL <X ~MRLA (2.46)
where < is read as “implies” and X is the mean value of the random
variable under consideration. )

" We now wish to apply the notion of the mean residual life and the
definitions for this quantity described above for the case of the
nterarrival distribution A(t) in our queueing system G/G/l. For an
nterarrival time distribution that is y-MRLA in the system G/G/1 we use
he special notation v-MRLA/G/1, whereas if A(t) is IFR, then we write
IFR/G/1. In Exercise 2.8 we show for the queueing system y-MRLA/G/1
hat

(2.47)

Where I is the random variable describing the idle time as earlier. As we
commented previously, as soon as we are able to place an upper bourfd
On the mean residual idle time, as we have just done, then Eq. @2.23) will
mmediately provide for us a lower bound on the mean wait W. We
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judiciously choose v =1, in which case Egs. (2.23) and (2.47) give ¢ the relationship in Eq. (2.46) which states that the IFR constraint is

1 Je strongest among the three. Applying Little’s result here we find
WZWU'f'Ef(l—p)—f cot ]
S P K, =AWy - (2.52)

) )\WU —
= Wo =3 i(1+p) - | |
‘hich again reduces the range of uncertainty for the average queue size
less than one customer. For example, the system D/G/1 which is IFR
nd for which C.”=0 results in an average queue size that is bounded to
ithin one-half a customer.
“Except for these last two cases of T-MRLA/G/1 and IFR/G/1, the
wer bounds we have found in this section are not simply expresse@ in
rms of the first two moments of the interarrival and service time
istributions (which was the happy situation with regard to the upper
ound of Section 2.2). Marchal [MARC 74] has developed such alower
ound which we now present. Our approach, once again, is to plaf:e an
pper bound on I?/2T in Eq. (2.23), and our point of departure is the
xpression for y. given in Eq. (1.124). We have already noted that the
imiting form of this random variable, §, may be expressed as

Thus, for the queueing system 7-MRLA/G/1, we have the upper and
lower bounds on the mean wait given by

Wo-ita+p)=w=w, o (248)

If we now apply Little’s result to this last equation and recall that N,
denotes the average number of customers in the queue, then we may
bound this quantity as

1+

S o= N, =AWy - (2.49)

AWy —

where A =1/7 is the average arrival rate of customers to this queue. This
last equation gives upper and lower bounds on the expected queue size;
note that the difference between these bounds is less than unity!

In Exercise 2.11 we show for the IFR/G/1 queue that

§=—min [0, W +ii]
/e have already shown (in Exercise 2.6) that I?/21 =y%/27, and so we
ill study the moments of §. We may rewrite § as

%f(1+ca2) (2.50) § =max [0, —W —ii]

S

=

=

P2 =max [0,f—%—W]
where t* and C, (=0./T) are the second moment and the coefficient of
variation, respectively, for the interarrival time. Thus again we have an
upper bound on the mean idle time, and so we may apply this to Eq.
(2.23) to yield the following lower bound on the mean wait: ’

ow, since X, { and W are all non-negative random variables, then from
is last expression, it must be that § is stochastically smaller than f. It
en follows that y*=t*. Now, since t*=a.>+(1/A)* we have

‘ - 1

Soa“rv'

«

W= WU+% f(1—p)—-21— I(1+CH
-But §=(1—p)/A and so

Y _T _Mol+1/A%)

2§_27f 2(1-p)
hbstituting this upper bound into Eq. (2.23), we finally obtain

2
wu_%s - (2.53)

= Wo —% Fp+C)

Combining this with our upper bound we have that the IFR/G/1 queue
has a mean waiting time bounded as follows:

Wv-—% H(Cl+p)=W=Wy = (2.51)
It can easily be shown that any distribution that is IFR must have a

coefficient of variation less than unity; therefore, the lower bound in Eq.
(2.51) is tighter than the lower bound in Eq. (2.48). This is a reflection

This may also be expressed as

2 2 ’
p°Ci+plp—2) 2.54
wd-p) =" - 259
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This is the lower bound we were seeking. Note that it is not symmetrica]
in ¢.® and o>, as is Wy in Eq. (2.22). This bound will be non-negative
only for service time coefficients of variation that satisfy Cb22(2—p)/p_
The exact value for W for the system M/G/1 exceeds this lower bound by
an amount X/(1—p); therefore, the bound degrades as p increases (but we
have seen that the upper bound improves as p increases). The main virtue
of this bound seems to be its simplicity.

Let us now look for bounds on the waiting time distribution itself
rather than on the mean wait.

ollowing inequality:
e = e C*(—s0)

e[ ewdcw
=Jm e ™ dC(u) (2.56)

{ow since so>0, for the range u=y it must be that e~ =1; thus
irieqiiality (2.56) may be extended to :

24. BOUNDS ON THE TAIL OF THE WAITING
TIME DISTRIBUTION

We recognize that a customer’s waiting time is the sum of the service
times for all those customers he finds in the queue upon his arrival plus
the residual service time for the customer he finds in service. Of course,
each of the queued customers’ service times is independent and
identically distributed, and so we might expect that a result similar to the
Chernoff bound [KLEI 75] would perhaps provide an upper and lower
bound on the tail of the waiting time distribution. This is indeed the case,
and we follow Kingman’s approach [KING 70] in establishing these
bounds. :

Once again we begin with the equation  Wn.; =max[0, w, +u.]
Therefore, for y>0 we may write

e~ ij e s dC(u)+J dC{u)
—c y
- j T e 4C(u)+1-Cly) 2.57)

S)Iig?%1sarslo)\:v>a(s)éume that wo (an initial customer’s wz.liting time) _is chos.en
o that Plwo=y]=e™; we wish to prove that this pypothesm carries
ver for all w.. We prove this by induction, assuming that we hil/ye
‘ready established its truth up to the nth step, that is P[w. = y]=e™,
Then applying this to Eq. (2.55) we have

PlWan=yl= F e ™™ dC(u)+1-C(y)
is ri ide i i bounded in Eg.

P[w"+12y]=P[W"+u"2ﬂ ut. this right-hand side is exactly the expressics)n we .

2.57), and so we conclude that P{w,..=y]<e™ also,.completlng tpe

ductive proof. Thus we have established  the follqwmg exponem?lal

ound on the tail of the equilibrium waiting time distribution (by letting

—> o0);

Conditioning this on the value for U, and recognizing that P[w, = 0]=1,
we have -

;= = =g -
Plweszy]= [ Plw,zy-uldcw) Pl =y (2.58)
y : .
=,L Plw. =y —u] dC(u)+1 ~C() (2.55) here, as we stated earlier, s, is found from
Now let us consider C*(~s)# E[e*~] where s is taken to be a real (rather
than a complex) variable; we recognize that s must lie in a restricted
range if this transform is to remain bounded. In particular, if there exists
a real s’ such that B*(—s’) A E[e**]<x, then a permissible range for s is
O=s=y'. Furthermore, there will be a range in which C*(—s)=<1 (for
example, in this stable case, C*(0)=1 and for s =0, dC*(~s)/ds = 1 <0,
thus identifying a neighborhood in this range), and we let s, denote the
largest value for s such that this remains true. We may thus write the

so=sup {s >0:C*(—s)=<1}

- he result given in Eq. (2.58) is, as we had predicted, similar. to tt'le form
f the Chernoff bound. It is possible also to prove _that tl'ns tail has a
wer bound of a similar form [KING 70], which combines with Eq. (2.58)

give
ve U =1-W(y)se™ - (2.59)
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;nust solve for the value of o, which is given as the appropriate root
Eq. (1.104) repeated here:
o =A*(mp—mpo)

faking the change of variable « =mu(1— o) the last equation becomes

where we have used our usual notation W(y)2 P[w =<y] and where
must satisfy the inequality

y= €0 (2.60
f €™ dC(u)
Yy
for all values of y >0; therefore, v is the smallest value that the ratio in 1—%= A*(a)
this last equation takes on. From these bounds on the distribution
function itself it is trivial to show that the mean wait may also be bounded

‘we now expand A*(a) in a power series about the origin as in Eq. (2.4)
by we.

¢ have i .- |
1-F=1-ta+5+0(a?
m 2!

Yew=l (2.61)

$o So .
These bounds on W are sometimes sharper than those we considered
earlier.

Kobayashi [KOBA 74c] also derives the Kingman upper bound in Eq.
(2.58) using Kolmogorov’s inequality for submartingales; Ross [ROSS 74]
improves on Kingman’s upper bound and studies these results for some
special cases.

ince we are considering the heavy-traffic case, we see that « 1 [that is,
W »x and o =1; see Eq. (2.63)], and so we may neglect the higher-order
erms; neglecting o(a?) and solving for a we have
| 2i(1-p)

o+

[l

a

. S 2 =2
ut since mf=x and since for the exponential service time o," =X", we
1ay rewrite this last expression as

2t(1-p)
o+ (1/mHa”

2.5. SOME REMARKS FOR G/G/m

So little is known about the queue G/G/m that any results available for
its approximate behavior are extremely worthwhile. Much of the work
has been addressed at bounding the mean wait and it is this which we
discuss below.

As we know, the appropriate definition for the utilization factor of this
system is

o=

/e may finally use this result in Eq. (2.63) to give the following? as the
pproximate mean wait in G/M/m as p—1:

o +(1/mH)a’ - (2.64)
2T(1—p)

This observation led Kingman [KING 64] to generalize from.G[l\/.I/m to
/G/m and to suggest {conjecture) for the heavy-traffic approx'lmatlop for
F/G/m that the waiting time should be distributed exponentially with a
ean wait given by Eq. (2.64). This conjecture‘ has rece.r.ltly bsaen
stablished by Kollerstrom [KOLL 74]; th}lS the Kxngmaq—Kollerstrom
pproximation to the waiting time distribution for G/G/m is

21(1—p) o
wo=1-em (22 ) (2.65)

W=

=X

== (2.62)
and it has been shown [KIEF 55] that the condition for stability in this
case is still

p<1

Now the most general multiple-server queue that we have so far seen is
G/M/m, and from Eq. (1.115) we observed that the conditional pdf for
waiting time is exponentially distributed with parameter mu(1—¢) where
X=1/u; in the heavy-traffic case we expect the unconditional waiting
time density to approach this conditional density, and so in that case we

he proof of this result uses a G/G/1 approximation to G/G/m in heavy
may write

raffic with interarrival times t. and service times x./m. (The Brumelle

1

Note for m =1, that this approximation for W reduces exactly to Kingman’s G/G/1
mu(l-o)

w

I

p—>1 : (2.63)

pproximation.
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G/G/ 1. If we form U* and U it is clear from this last equation that
W*=mW (2.70)

w if we subtract Kingman’s lower bound from Brumelle’s lower bound
d denote this by B. —K; we have

lower bound below also uses this approach.) This G/G/1 approximation
was developed earlier by Kiefer and Wolfowitz [KIEF 55]. This
heavy-traffic approximation for W(y) also implies that the heavy-traffic
approximation for W is as given in Eq. (2.64) for G/G/m.

Suzuki and Yoshida [SUZU 7 0] have shown that Kingman’s conjecture
is truly an upper bound for W for p=1/m. Kingman himself [KING 70]
suggests that the approximation is an upper bound for 0=p <1, but does
not prove it, and so far this remains only a conjecture. We state the
known bounds on W without proof. Kingman [KING 70] derives the
following upper bound for the mean wait: IR

L0+ (1/m)a +[(m — 1)/m?*}x?
W= ) (2.66)

P

2 2 \2
—w(e—1), o’ +U/mA)ay
BL—KL—W( 5 )+ STp

the average wait W in Brumelle’s single-server sy‘sterr? clea}rly has ag
per bound given by Eq. (2.22), where the mean service .tlme is &/ m an
service time variance is 02/m>; throughout we maintain the definition
br.p as given in Eq: (2.62). Therefore we may write

b Ot (1mY)ay’

Brumelle [BRUM 71] also finds this upper bound for G/G/m.

As for the lower bounds on G/G/m, Kingman [KING 70] shows the
following: '

W 2W*t ~ (o2 + mo.’)—[(m— 1)/m]z? o

% K. (2.67) W=t i-p)
' .. oo ; — i diately have
where W* is the average waiting time in a G/G/1 system with service ing this inequality in the expression for B, — K. we immediately
times {x.} and interarrival times {mt.}. Brumelle [BRUM 71] also gives a ; B.-K.=0

1 bound in the following form: o
e e foloving fom yhich clearly shows that Brumelle’s lower bound is tighter (larger) than
Gingman’s lower bound. : o
thf summary then the best published bounds for the average wait in

/G/m aret

. - x° 0. +(1/m)ay” +[(m — 1)/m*]%>
w-lm=Dimle i - (2.71)
ne sees that these bounds are consistent with the Kipgman—Ki?l.lerstltom
eavy-traffic approximation of an exponentially distrxbutgd .waltmg tlm’e
Eq. (2.65)] with mean given by Eq. (2.64). The/term W-lS Brumel¥e. s
Ingle-server system to which we may apply any of our e_arher t{ound.s, in
articular if one is willing to assume more about the 1ntera}rr1val times
uch as we did in Section 2.3 (for example IFR) then a tighter lower
o ay be obtained. '

! xldinr?pr);vement in the upper bound may be found for the sp_ecxal case
/M/m. Although G/M/m has been solved exactly, as we saw in Sect¥on
.9, we observed there that the solution required the difficult calculation
t and R« (k=0, 1,...,m—2). Therefore an easily calculated bound

For p<1/m, the upper bound can be tightened by the results of Suzuki and Yoshida

wa=w-[m=Dimlx*, o (2.68)
2%

where W is the average waiting time in a G/G/1 system with service times ,
{x-/m}and interarrival times {t.}. Let us compare these last two bounds. If
one plots the unfinished work for Kingman’s special single-server system
(whose average wait is W* and whose average unfinished work will be )
denoted by U*) and if one also plots the unfinished work for Brumelle’s -
equivalent single-server system (whose average waiting time_is given by
W and whose average unfinished work will be denoted by U) then one
readily finds that

UF =m0 (2.69)

This is easily seen by comparing the two unfinished work functions and
recognizing that the average of the unfinished work on a scaled time axis
is independent of the scaling. In Chapter 3 below, we show that [see Eq.
(3.23)] the average unfinished work, U, is simply

=R
N

U=pW+
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serves a useful purpose. The key result here (due to Brumelle [BRUM A DISCRETE APPROXIMATION
73]) is once again to consider his single-server system G/M/1 with service‘»
times {x./m} and interarrival times {t,}; again we denote all variables for
t}.u's system by a caret. Brumelle shows that P[w, > y]< P[w, > y], which -
y'1elds, as a corollary, W= W. To calculate W, we need dtal only with a -
sm'gle:se‘rver system, which avoids the calculation of J and Ry; the méan :
wait W is in fact given in Eq. (1.103), which involves finding o from Eq
(1.100)—a much simpler task. On the other hand, to make the G/M/I. ;
f:alculation even easier, we may use our earlier result in Eq. (2.22), which

is good for any G/G/1 system, to obtain finally for G/M/m - St

So far in this chapter we have handled the complexity of the G/G/1
queue by finding approximations and bounds for the exact solution.
roughout most of the rest of this chapter we take a different point of
view: rather than attempt an approximate solution for the original
problem, we attempt an exact solution for an approximation of the
briginal problem. That is, we purposefully distort the equations of motion
or the given G/G/1 queue and reformulate them in a fashion that permits
the system equations to be solved. In this section we discuss a rather
ude discrete approximation.
.- The key to the approach in this section is to alter the input distributions
[A(f) and B(x)] in such a way that our basic recurrence relationship
given again in Eq. (2.76) below] permits a direct analytic solution for the
distribution of waiting time,

o 0o+ (o m?)

w?xich is an imprqyement over Eq. (2.71) and which shows that \the
Kingman-Kollerstrém heavy-traffic approximation is, in fact, an upper
bound to W for G/M/m. In fact, the bounds are rather tight, since we

*
now have shown* that for G/M/m, Was1 =max [0, wa +un] (2.76)

m-—1
m

a

-

We observe that the iterative application of this equation is quite
straightforward when the interarrival time and service time are both
discrete random variables whose only nonzero values occur at the instants
kr (k=0,1,2,...) where t is the basic time unit. In such cases one may
write down the limit of such recursions to yield a set of linear difference
equations that may then be handled by the method of z-transforms [KLEI
75}. We see that this approach requires little more sophistication than
that which one uses in elementary queueing theory. If our original
random variables are of this discrete nature to begin with, then we have a
simple method for giving the exact distribution of waiting time. On the
other hand, if our given random variables are continuous, then we are
faced with an approximation problem; that is, we must approximate the
continuous random variables with discrete ones in a fashion that
preserves the essence of the solution we seek. Just how one goes about
choosing this approximation is as yet basically unstudied and the only
recommendation we make at this point is that if one wishes to represent a
continuous distribution with a finite set of discontinuities then one should
use this approximation to match as many of the moments of the original
distribution as possible, working from the first moment and proceeding
upwards. We emphasize again, however, that the precision of this
approximation has only begun to be studied.

Perhaps the best way to present this method is through an example. We
avoid the question of how one should approximate a continuous random
variable and assume we begin with discrete interarrival time and service

) F=W=W  (G/M/m) - (2.73)

Using Little’s result, we have
N-pm-1)<N=K (G/M/m) - (2.74)

and since_ p <1, we have bounded the average number in system to within
mf - lhof its true value [and this true value happens also to be within m — 1
of the average number in the equivalent G/M/1 syst i
N o ystem, i.e.,
If we now take advantage of Marchal’s lower bound for G/G/1 in
Eq: (2.54) an_d use it with Brumelle’s lower bound in Eq. (2.68), we
arrive at a simple explicit lower bound G/G/m as follows. In par-
ticular, we bound W by /
2 2
PG —p2—p)_«
2ad-p) =V

Using this in Eq. (2.68), we get

P’GC2—p(2—p) ~1)/mlx>
A —p) -l A =w = (275

This is a simpler explicit lower bound for G/G/m.
The results of this section only begin to provide some answers for
G/G/m; much more work needs to be done in this area.

* IneTren -
We note that x2/2% =% for the exponential service time.
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time distributions. Thus we assume, by way of example,

A(t)={(1)
0
B(x)={%
1

Since we deal only with discrete random variables, let us define
' ' ktl; we may then- display these
discrete functions as in Figure 2.2. Of course these also could hazlfe been
represented as pdf’s with impulses at these same points.

must find the probability distribution

: : $INCE Uy =X, — 1,1, We see that c(k
must in general be given by the following discrete convolution: ‘

c(k)=a(-k)®b(k)

a(k)=Pft, = kr] and b(k) =P[x, =

If we are to apply Eq. (2.76) we
for u,. We define c(k)=P[u, =k=];

®

=iZ a(~k+i)b(i)

oo

So long as the representation a
.te.r'ms, then this convolution is
It is trivial and leads to
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(l.c) and 'b(k) contain a small number of
easily carried out by hand; for our example
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clk)

t<2r
t=2r 1

R 1 L
x<0 o .
O=x<3r -3 -2 -1 0 1 2 k
3r=x Figure 2.3 The probability Plu, = kr],

the,probability (mass) function as
pn(k) = P[Wn = k’T]

We are now ready to apply the recursion, which means that we must carry
ut the operations described in Eq. (1.121). Assuming that we have
pplied this recursion up to the calculation of p.(k), we may proceed as
ollows. First we find the probability distribution for the random variable
n+ U, Which means that we must conyolve p.(k) with c(k); then the
flect of the operator 7 means that we must sweep the probability in the
egative half-line up to the origin (which in our discrete problems is
imply a matter of addition) giving the next stage of the recursion, namely,
»+1(k). Carrying this operation out for our problem we generate the
equence shown in Figure 2.4. Starting in the upper left-hand corner of
this figure we see the initial waiting time distribution; forming its
onvolution with c(k) we get the distribution shown in the upper

1 =

: k=-2 - right-hand corner. Sweeping the probability in the negative half-line upto
c(k)=<3 k=1 the origin we then easily find pi(k); this convolved with c(k) gives

0  otherwise ‘the figure to its right, which when its negative half-line is swept up to the

which is shown in Figure 2.3.

In order to apply the recursion in Eq. (2.76) we need a starting value

so let us assume for this example that

afk) b(k)

-

Figure 2.2 The discrete probabilities.

‘origin gives us p,(k), and so on, as we follow the arrows through the
_sequence of probability (mass) functions. Our object is to find the limiting
-probability function defined as

wo =10, Furthermore, we define

p(k) £1im p. (k)

n order for this ergodic distribution to exist we require that p <1, which
1s equivalent to requiring that E[u.]<0; for this example we have % =3,
=2 andso p=%/t=%and E[u,]=% 7 = —%. The procedure for writing
.down the equations that describe the probabilities p(k) is easily seen once
We understand what is happening in Figure 2.4. We require that the stable

stribution, after being convolved with c¢(k) and then swept up to the
origin, is exactly as it was before these two operations; that is, Eq. (1.122)

(A e TS

Must hold,, which in our notation becomes pk)=a(p(k)®c(k)).
Turthermore we note that the m operator only affects the term p{0), and
S0 the form for c(k) tells us exactly how a given term p(k) is related to its
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Figure 2.4 The recursion p,..(k)= 7{p.(k)® c(k)).
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iéhbors. In particular, for our example we see that
p(k)=3p(k —1)+ip(k +2) k=1,2,3,... (2.77)
d that the boundary equation for p(0) is

p(0)=3p(0)+3p(1)+3p(2) k=0 (2.78)

We are now faced with the familar problem of solving a set of linear
difference equations. The rest is straightforward (see Exercise 2.12).

Certainly, the spectrum factorization method summarized in Section 1.10
leads to the same solution. The virtue of the method given here is that it
exp11c1tly takes advantage of the discrete nature of our random variables.

In both cases the difficult part of the solution is in finding the roots of a
lynomial [in the case here it is the roots of the denominator of
P(z) =Y« p(k)z¥, whereas with the spectrum factorization method it is
firding the roots of A*(—s)B*(s)— 1]. The point is, however, that we are
ggesting an approximation scheme to convert continuous problems to
discrete ones for which rather simple methods apply; the important
juestion regarding how one generates an adequate approximation has not
en discussed here. This issue of approximation has recently been studied
by Wong [WONG 74}; he investigated how well matched were the
distributions and moments of the input and waiting time variables. His
results comparing the exact mean wait W with that of W, as obtained
rom the iteration shown in Figure 2.4 and with Kingman’s upper bound
Wy are given in the table below; we note the excellent match between W

System p w Wa Wy
M/M/1 2/3 . 0.13 0.13 0.22
M/E2/1 2/3 0.10 0.10 0.18
M/E3/1 2/3 0.09 0.09 0.17
M/E5/1 2/3 0.08 0.08 0.16
M/E10/1 2/3 0.07 - 007 0.16
E2/M/1 2/3 0.09 0.09 0.14
E3/M/1 2/3 0.08 0.08 0.12
E5/M/1 2/3 0.06 0.07 0.10
E10/M/1 2/3 0.06 0.06 - 0.08
M/D/1 2/3 0.07 0.07 0.15
D/M/1 2/3 0.05 0.05 0.07
E2/E2/1 2/3 0.06 0.06 0.11
M/H2/1 5/6 0.43 0.40 0.53
H2/M/1 4/5 0.28 0.29 0.36
H2/H2/1 5/9 0.12 0.14 0.26
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V ‘ ] EWE 65, 68, 71]
Y developed by Newell N . '
Z'Orkéep:rr t?%:%%lége]:;reo?h?rs who have studied these apggrox;n;:kt::rr;
dthocilisV include Borovkov [BORO 64, 65], Iglehart [IGgio}%’é g] hart
rﬁned Whitt [IGLE 70], Kingman [KING 64], Prohorov [ ,

n 8 :
dﬂ:xrr?c')ng the fundamental stochastic processes for queues are the arrival
process and the departure process defined as

We also comment that Cohen [COHE 69] gives a procedure for
handling the case G/G/1 where he truncates the service time distribution
and considers a new distribution B.(x) such that B. (x)=B{(x) for X=<x,
and B.(x)=1 for x>x,. Taking advantage of the simplifications derived
from this truncated distribution, he then presents a method of solution
and considers the implications as x, —® to remove the effect of
truncation. Neuts and Klimko also consider a G/G/1 system with

& ha"e dOIle Ilel [+ E l l 73 l th 1me A . . 2.79
i | . B S(t) —Number Of departures m (O, t 2 80

2.7. THE FLUID APPROXIMATION FOR QUEUES

When an engineer is faced with a systems analysis problem, the first
thing he attempts to do is to estimate the gross behavior of the system,
however crude that estimate may be. That is, he attempts to “size” the
system behavior so that he may make some first-order engineering
calculations. Once this is done his task is then to refine his estimates and
his approximate analysis; this refinement need be carried only so far as is -
necessary to insure satisfactory operation within some bounds. The point :
is that he must come up with answers (estimates) on all aspects of the

A typical realization for these step-wise increasing processes 1: Sh;):;:eﬁ:

; : i f time their difference must re 1

Figure 2.5. Clearly at any instant o . st

Fl%:;rethe number gf customers present in the system (for N(0) = 0), that is,
3

N@)=a(t)-5() ’ (2.81)

' When at) gets large compared to unity then wz _e_)ggc.ecgl otnilsybsn;;lllel
p;ercentage deviations from its average value E[a(t)]= «(t); tha y

aw of large numbers we have

system behavior including transient response, overload conditions, and so m 2‘,(1);_0‘@ =0 (2.82)
on, and not only “nice” equilibrium results. Much of queueing theory is e at)

imation to the
with probability one. This suggests that a first-orcer a‘?’ﬁfﬁ?ﬁ‘lf time.
. stochastic process is to replace it by its aver.age va ué{ a fiom for queues in
* This amounts to what is known as the fluid ap[;rért))urrizsfz eplaces by the
customer flow. This enables us to study transients and overloads. which the discontinuous stochastic process
We know for any queueing system that both the number of customers
and the unfinished work as functions of time are each stochastic processes
with discontinuous jumps (for example, at instants of customer arrivals to
the system). The approximation we wish to study takes advantage of the
following observation: when the system is in the heavy-traffic condition
(namely when the queue sizes are large compared to unity and when the

-
O O -

functions of time. The usefulness of this approximation lies in the fact
that the magnitude of the original discontinuities is small relative to the
average value of these functions. We are dealing with a case of small
relative increments. Thus we are led to a continuous stochastic fluid flow
approximation for the original discrete queueing system.* Much of the

Number of customers -

0O = N WA OO N

* We comment that usually it is in the case of large queues and long delays that the analysis
of queueing systems is important; the case of small queues and delays is usually less
interesting since typically they pose no serious problem to system performance.

Time

Figure 2.5 The discontinuous arrival and departure processes.
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continuous deterministic process m. As we show below, there is
considerable merit in this approach. Similarly we let the discontinuous
stochastic departure process 8(t) be replaced by its mean value W
Consequently, if we assume that N(0)=0, the fluid approximatior;
predicts that the number in system at time ¢ must be given by

N =at)-50)

wpich also is a deterministic continuous function of time. The apalogy
with f?uid flow is complete and may be thought of in terms of the
fol'lowmg example [see Figure 2.6(a)]. Consider a funnel with an
adjustable valve controlling the rate at which fluid may pass out of this
funnel. We pour fluid in at the top at a rate .da_(tS/dté)\(t) (the arrival
rate of “customers”) and we permit fluid to discharge at a rate
de(t)/dté;.L(t) (the service rate for queues); of course the total amount
discharged must never exceed the total amount fed in. In this case then

we see that the total fluid accumulated in the funnel by time ¢ v’vill bé

given through Eq. (2.83). Thus we have

Z(T)=W())+J:)\(y) dy

5_(5=W+L wn(y) dy

At)

aft)

5(0)

0
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nsider, for the moment, the case where A(t) varies with time but where
1) is fixed* at w; an example of this is shown in Figure 2.6(b). Here we
%ee the case where A(t) increases from a small value at time O until it
uals p for the first time at fo. At this instant the backlog begins to grow,
aching its maximum value at time t, when once again A(t)=p;
ereafter it decreases to O at time t,. This simple approximation has a
fumber of serious drawbacks. For example, we see that it claims that no
queues form as the system approaches saturation from the left at time #;;
ainly we are aware that the size of the backlog at this time is strongly
depehdent on the manner in which A(t) approaches p in the interval prior
o fo. As a result of this approximation, queue lengths may be badly

(2.83)

In spite of the crudeness of this fluid approximation, it does lead to
jome worthwhile qualitative aspects of queueing behavior, which we now
xplore. Much of this material follows that of Newell INEWE 71]. One of
he important questions in the study of queueing theory is the way in
which queues and delays grow during and after a “rush hour.” The exact
ueueing analysis in these cases is abominably difficult even for the
implest assumptions for our stochastic processes. However, we can give a
ery gross picture through our fluid approximation (which will be refined
in the following three sections). For example, consider Figure 2.7; here
e show an idealized model of a rush-hour situation. In part (a) we show
the arrival rate constant at one customer per second up until ¢t =2; then
he arrival rate rises linearly at the onset of the rush hour, levels off at a
constant value for a short while, drops linearly at the end of the rush hour
o its former value at which time it levels off again, and maintains that
value. We show the service rate constant (see footnote below) at a
-value w =2. During the time interval (2§, 73) we see that the system is
verloaded in a serious way. In part (b) we show a(r), the continuous
rival process, and §(t), the continuous departure process. The growth in
he number of arrivals in the vicinity of the rush hour is evident [we
ssume a(0) = 8(0) = 0]. Up until t =2} we see that 5?5=57(f); however,
or the next 5 units of time, the arrival rate exceeds the maximum
eparture rate and so the two curves se(parate forming a backlog N{t).
+This backlog is shown in part (c) [on a scale twice as large as that in part
/(b)] and we observe that it grows quickly reaching its peak value at the

]
|
ﬂ(l)f
i
I

Backlog = N(t)
]

~ b

j 0 ty
ate) A )

(a)

Figure 2.6 Fluid approximation to queues.

nstant when the arrival rate once again falls below the service rate at
't="7}. We emphasize that at the “end” of the rush hour [when once again

* That is,
e for N(t)>0
- “(‘)‘{A(z) for N(t)=0
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t)=u] we have merely reached the peak of the backlog and the effect
the rush hour will continue for a (possibly long) while. From the figure
see that it takes until ¢t = 18} before the backlog disappears! It is easy
see what is happening by referring back to part (a) where the
sross-hatched area labeled @ is equal to the “‘deficit” between service rate
and arrival rate and therefore represents the total number of customers
backlogging in our system; on the other hand, once the arrival rate drops
pelow the departure rate we can make up this deficit with the excess
city shown as the cross-hatched area labeled ©. Only when the total
n! gétive area equals the total positive area will our backlog drop to zero.
the nonrush-hour value for A(t) is only slightly less than the departure
rate p, we see it will take quite a while for us to make up the deficit; this
produces the “long tail” on the backlog N (t). Conversely, if the rate of
accumulation of negative area is large compared to that for the positive
rea, then the backlog will fall off rather quickly. Of course, these
mments apply to any arrival and departure process such as, for
ample, shown in Figure 2.8; here we assume that the backlog is 0 just
jor to time t; but that at this time it begins to grow since the arrival rate
ceeds the departure rate. N(t) will grow as fast as positive area is
accumulated in the figure, finally reaching its peak at t,; it then begins to
cline by an amount equal to the accumulated negative area reaching
ero when the two areas are equal.
Perhaps now we understand why the freeways remain saturated so long
after the close of business. We express the strong caution that although
the fluid approximation correctly predicts the long tail of the rush-hour
effect, the backlog we have shown is, if anything, optimistically low since
we have not included queues that arise due to the variability in the arrival
and departure processes; these may be large compared to the fluid effects.
For example, in Figure 2.6 we have shown A(t) slowly approaching the
departure rate p and finally equaling it at time t; in such a case we
recognize from our earlier queueing results that as we approach t we are
also approaching p — 1, and we expect our queues to grow large in this
vicinity. These queues arise due to the random nature of our input

g

Figure 2.8 Making up the deficit.
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processes. The fluid approximation (which we see is really a

2.8. DIFFUSION PROCESSES

In the previous section we used a first-order approximation for queues
in which we replaced the arrival and departure processes by their mean
values, thereby creating a deterministic continuous process—that is, the

fluid flow approximation to queues. We
processes are random in nature and in this
sections) we improve that approximation

realize, of course,

distributions. We may justify this as follows. Observe that a(t) represents
the total number of arrivals up to time t. If we ask for the probability that
a(t)=n, then that is the same as asking
7. that occurs at or before t; that is,

Pla(t)=n]=P[r. <1]

This is an important equivalence and is used extensively when one
considers ladder indices
[PRAB 65]. Here, however, we take advantage of this equivalence in the
following way: The arrival time of C. is merely the sum of n interarrival
times, that is 7, = titt+- - - +t, where we assume T0=0. For G/G/1 we
assume that the set {#} is a set of independent identically distributed
random variables [each with a distribution function A(t)]. When the time
t, and therefore the number h, get large, then*r, is the sum of a large
number of independent (and identically distributed) random variables.
Thus we expect that the central limit theorem should apply and permits
us to describe the random variable 7, and therefore also the random
process a(t) as Gaussian functions. This assumption of normality for a(t)
[and for 8(1)] is the cornerstone of our diffusion approximation and its
details are derived in this section. .

For the diffusion approximation, we propose that the arrival process a(t)
and the departure process 8(t) are both to be approximated by continu-
ous random processes (with independent increments) which at time ¢ are
normally distributed with means a(t) and 8(t) and variances e and

“continuous” -
D/D/1 approximation) assures us that there will be no backlog until after

section (and the following two
by permitting () and 8(t) to
have variations about the mean, We do this by introducing the variances
0w and ol for the arrival and departure processes, respectively. A
natural way for introducing these fluctuations about the mean value of
our process is to represent these fluctuations by normal (Gaussian) -

that customer C, arrive at a time °
(2.84)

and combinatorial methods in queueing theory
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‘ i i ur parameters (the two
O e sariane )Wehdeterm\l;fli; Llallevsee ciomplgtely described these
' d two variances), then we : des

anrsaigom processes since the Gaussian process with mdependet::
. i i i i -parame
ieldi i nce function) is a two-p

ments (yielding a trivial covaria ! ‘ I

orceess (indged, we have a Brownian motion process, 1.e;i 1gtegra:§2
" ise” wi an [ITO 65]). As mentioned above,
swhite noise” with a nonzero me °
Ii]:mce terms are introduced in order to represent Fhe random ﬂuct;la;s
jons of these processes about their means. We intend to use his
- yroximation to make statements about the number of cus.tomers km
sli)iérh N(t) and the unfinished work in the system U(r). As is well ngwn
%APO 65], if we have two independent normal!y @stnbuted random
{ocesses s;ly a(t) and 8(t), then any linear combination pf these two 1csi
lrso a n<;rma11y distributed process (with some approp_natl‘t;e;r::gn i:nis
ari : i ombination we are in
ariance). Of course one linear ¢ :
?t)——S(t), which represents N(t), the backlog gxpr;l;ssed ﬁln. ?ltélcllxb‘:;rif
h interested in the unfinis ,
ustomers. [We are also very muc . ; : unfinished work,
: i cklog in units of time.] Indeed,

t), which represents the back :
[{é(nz(’mstrate in Eq. (2.132), below, that the backlog.has a %ar:ge;x;t
istribution that is the weighted diﬂerence. of twq Gaussian distri E 1o£he.
or p<1, an equilibrium distribution exists which t}lrns out ﬁ;o e e
;(ponential distribution we obtainedin Eq. (2.9) fo%'thg he%wy-tra. c .al.:»prg'1 ”
mation! For p>1, of course, no equilibrium distribution emst§, in .
ase h(;wever it turns out, for example, that the properly shifted an
g b b
caled waiting time w,, namely,
' W, — nil

O'c;\/—ﬁ

atisfies the central limit theorem [KING 62b], permitting us to talk about
i ial kind of convergence. . o _
VI\SV;I;Clwe attempt to take advantage of the linear comblyatlon [N (t.)
(t)—8(t)] of two independent Gaussian processes, a difficulty arlts;s
mmediately: 8§(t), the departure process, clearly is dependent 1£0t)1> Oe
rival process [that is, 8(¢) = a(t)]. Fortunately, howeve'r, when (tice is,
hen the departure process increases by one eac'h time a serv s
6mpleted and so the interdeparture times )areldlstrlbuted[ as ](S)f:gwas
i i ocess [so
( mely B(x), independent of the arrival pr '
I?SS; (;1]3 Th\)lls when N(t) is large, we have a depart'ur.e process thit' 1}§
pproxin;ately independent of the arrival process, and it is ‘thls case W ;ie
nferests us. As a result we might expect that thde approximation we
‘ is li ded.
naking is poor when the system is lightly loa o
*}rl(}l:l% \l:epl(l)ave the framework for our second-order appr.ox1mat10n (tl.le
iffusion approximétion) to our queueing system. Replacing «(t) by its
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mean «(?) and its variance o2, is equivalent to making a Taylor expan-
mean value and throwmng away all but the
first two terms in this €xpansion [see Eq. (2.102)]. Let us now establish
of our arrival and
departure processes and the parameters of A(t) and B(x). We have
already shown that Pla(t)=n]= Plr. =<t] for any t and n, Similarly if we
represent the total time to service the first p
customers then it is clear that P[8(t)2n]=P[X"St], where we are

sion of this process about its

the relationship between the means and variances

let X, =x;+x,+-. *+ X

-

2 2
Ox, = hnoyp

using our former notation. Applying the central limit theorem we have
that the normalized sum (X, —n%)/o,vn must be normally distributed
with zero mean and unit variance as n — ; that is, for n >» 1,

X, —nx 1 [ . _,
P["\-Sx]:—:— ey 2.85
ouvn V2w, y (2.85)

where the right-hand side is defined as ®(x). If we say X is N(m, ¢'?), that
is shorthand for saying i

m and we say that X, is
N(nZ%, nov® and that (X —n®)/ou v is N(0, 1); we see that this second
random variable is a shifted and scaled version of X.s0asto giveus a new
normalized variable with zero mean and unit variance. We observe that
X, itself has a mean that grows linearly with n and a standard deviation

approaches infinity.
Now the event (X —nx)/oyVn=x is the same as the event X, <
X0y VR+ni, Let us define

t £ x0,Vn+nz (2.86)

By our former arguments we have
PlX, St]=P[8(t)2n]—> Gaussian (2.87)

for large n. We are interested in showing that §(¢) is indeed a normally
distributed random process; this last equation almost does that but
€xpresses it in terms of a given quantity n, and we must now uise the
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la{tionship between t and n in Eq. (2.86) to express this properly._n\i\z
ote for large n that the dominant term is t=n% and SO as an approxi
on [with the correction term from Eq. (2.86)], we write

~_f__x(ﬂ> L
X X X

(2.88)

hus the event 8(1)=n may be written using this last approximation as

80~ (%)

(/DR

it we apply this to Eq. (2.87) and use the symmetry given by ®(x)=
—®(—x) we find that
P 20=U0) ., ] ) (2.89)
(oW/ XWX ,
i 1
' departure process is a norma
for large t. Thus we conclude that the ure is a :
f;;dgff variable with mean #/% and standard dev11at10n 1(}71, xét/_x)éalcl r t:ra;; vl:i
5(1) i %, vt/ (% Thi t applies for
i N(t/x, ov“t/(%)’) for large t. This same result
5r(z))c;sss i(t) ifbthe mean and variance of service time are replacedzt;yf')cge
gle‘an and variance of interarrival time; that is, a(t) is N(t/i’,f o-.,lt( A t
ote that these are both approximations that are good only for larg
i i tems.
oderate-to-heavily loaded queueing sys : .
an'(li“}fl?: \ane conclude that the number of customers in the system at time ¢,
iven by N(t)= a(1)—38(t), is also given as a ‘n‘ormal rzzmdomZproce2ss
%vhose mean is N(t)=a(t)~8(t) and with variance G'N(t)=o'ui;)_'t-(:ll‘;(é)
since variances for independent processes Zlnust add. ?Xlzﬁrz)or:eist eiactly
i i d-order approx .
number in system for this second. ) 15 €
:Illlza;lesult for the first-order approximation '(the .ﬂuld approx1mhat10n)f(1)r;
€ previous section. Thus, with this approximation, we have shown
he case G/G/1 that the mean and variapce of N(t) are

2
Zo=|7 "—”] t (2.91)
ONe = [(t_)3+(3f)3 ,
We note that both the mean and variance grow hlinearly w“::)btel:nien.
imati hows that the mean nu
However, for p<1 our approximation s 1
ystem becomes negative; clearly we cannot tolerate ,t’hlst, :lllld (l))reilgc;:lv ;:):
ir i “reflecting boundary” at the
epair that defect by placing a “re o orem or
it a reasonable approxima
N(t). However for p>1 we see th? . .
; de(viloped where the mean number in system grows linearly with ¢ and
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We now introduce certain assumptions on the stochastic p

L , . 1 a e X0
where the standard deviation of this number grows with vt to represent Ve 1w introduce cortal B eed sbove)s i particula

ssume
discrete nature of the arrival .and departure processes. Nevertheless, ip
the case when N(1) is large compared to unity, this approximation is
useful. In order to gain more information about this diffusion approxima-
tion for the process N(t), we will now study the partial differentia]
equations for its probability distribution function. This will permit us to
properly include the reflecting boundary at the origin as well as to make
more explicit statements regarding transient and equilibrium “behavior

lim L j d,F(x, t—AL; y, 1) =0 (2.93)
a—0 At ly-x|=¢

inv & > 0. Furthermore, we assume that aF/dx and aZF/ax'Z exist azd
O oni us. We now introduce the conditional mean M(x, t; 1-).a.ndt e
. C'ofltn:;%ar.iance V(x, t; ), where the condition is on the position (?c)
f-?gét;)rr;cess at some previous time ¢ (t <T); these we define as follows:

under this approximation. In addition to studying N(t) we will also study A — (2.94)
U(t), the unfinished work at time ¢, which will also be approximated as g M(x, t; 7) £ E[X(r) | X(1) = x] 1 X() = x] (2.95)
normal random process. In particular we are interested in the way in < V(x, t; 1) £ E[{X(n)—M(x, t; D} | X(1) =

which these random processes change during a ‘small time interval; this'
time interval must be small enough so that the random process changes
by a small fraction of its value but it must be large enough to permit
enough discrete jumps to take place so that these two processes may be
approximated by a continuum. We are thus led to the study of continuous-

3= i ting than this
)= V(x, t; t)=0. More interes .
te that M(x, t;t)=x and 1E g th is
Wea:lloand variancé are the infinitesimal mean m(x,t) and m{i.zz;zs:/ritth
:riance o*(x, t), which give the rate of change of these quantiti

espect to T at the point T =t, namely

time continuous-state Markov processes. That is, we assume the processes A OM(x, t;7) (2.96)
to be Markovian in this time frame. We now launch into a derivation.of m(x, t)=_b.,-—“ ot
the underlying partial differential €quations for these continuous-time : )

. . x 2 nadVI(x, t;7) (2.97)
continuous-state Markov processes, and if the reader chooses to pass over o*(x, t) = |

this derivation he may do so and immediately proceed to Eq. (2.113),
which is the key result of the following development.

In Section 1.3 we considered Markov processes that were continuous in
time but with discrete state spaces and observed that the state-transition
probabilities obeyed the Chapman-Kolmogorov equation given in Eq.
(1.44). Since we intend to replace discrete and mixed random processes
[that is, N(¢) and U(t)] with continuous ones we are naturally led to the
consideration of a continuous-time continuous-state Markov process,
which we denote by X(t). In analogy with Eq. (1.43) for the conditional
discrete-state  transition probability, we consider the following condi-
tional continuous-state transition probability:

FOo t;y, M &PX(=y|X(0)=x]  for t<s (2.92)

Thus F=F(x,t;y, ) merely gives the probability that the process takes
on a value <y at time r given that it took on the value x at time 1. This
(possibly time-dependent) transition probability obviously satisfies the
following Chapman-Kolmogorov equation: .

In these last two equations derivatives are take.n for r=t; }sleetrFlﬁs“Zion
These infinitesimal quantities may be expressed in terms of the tra

Slope = m(x, t) '

T

I
!
|
|
!
|
|
i
t

0 .
o oo al
Figure 2.9 Relationship between the conditional mean and the infinitesim
| ' mean.

F(x’ t; )GT):J‘ F(W, u;y,T)dwF(x’ t; w, u)
where t<u<r, }
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probabilities as follows:

mx 0 =lim 3 [ (y=x) F(x, £~ At y, 1

.1 (" \
0= lim 5o [ (y-xV 4 1-A13y, 120

Thus for small positive At we have the following approximation:
M(x, t; t+At)=x +m(x, t) At
Vi, 1+ =a(x, 1) At

With this description of a continuous Markov process we now wish to
derive the backward and forward equations for F. We begin with the

backward equation. From the Chapman—KoImogorov €quation, we have

F(x,t—At;y, 7) =J:: F(w, t;y, ) d F(x, t—At; w, t)
In a trivial way we may write F in the form
F(x,t;y, 1) =J‘_: F(x, t;y, 7) d.F(x, t—At;w, t)
since upon factoi‘ing F out of the integral we are left with the integral of a

pdf that goes to unity. Subtracting these last two equations and dividing
by At we have

F(x9 t—At; ys 7)_F(x’ t; Y T)
At

~Ae) - P00 63, 9~ FC, 3, 1) duF s £ At 1 (2.100)

Now the integral on the right-hand side may be broken into two integrals,
the first over the region |w—x|=¢ for ¢ >0, and the second over the
region |[w ~x|<e, By Eq. (2.93) the first of these two integrals vanishes as
At— 0 and we may replace the integrand in the second of these two
integrals by the following Taylor expansion: ‘

F(w, t;y,7)~F(x, t; ¥, 1)

=(w-x) §+%(w —x)? g—x§+o«w ~xP) (2.101)

f we now substitute Eq. (2.101) into Eq. (2.100) and take the limit as

I
At— 0 then from Egs. (2.98) and (2.99) we arrive at the following partial
differential equation for F :

oF O°F
o =mx 1) g—f+% X 055 (2.102)

(2.98)

(2.99)
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1s is the backward Kolmogorov equatiop for our cox.ltinuous-t;n':i
ontinuous-state Markov process; F will satisfy tk(;l)s equation excep

i i t-the origin, y =0).

nts of accumulation (such as a o1 )
o\lNe now derive the diffusion equation (alsp known as the Foklf;trle
lanck equation) that is the forward equation for.our prog:eiss.
unction satisfying this equation is the pdf associated with the final state v,

amely,

IF(x, t; y, 1) 2.103)
f(X,t;y,T)é“T“ (
h1s density f also satisfies the Chapman-Kolmogorov equation
(2.104)

}f(x, t;y, T)= ‘E flw,usy, 1)f(x, t; w, u) dw

here t<u <7. We now consider an arbitrary function Q(y? that (lalontlg
with its derivatives) vanishes rapidly enough at +e for the integral I to
converge, where

Iéﬁ Q(y)w_,;;mdy (2.105)

Now from the definition of a derivative and from Eq. (2.104) we may
rewrite I as

I=lim _l_r QW)f(x, t;y, T+AT)—f(x, t; y, 7)] dy
a0 AT | o

= lim -L[J: Q(y)J: fx, t; w, I)f(w, 75 y,7+A7) dw dy

ar—0 AT

- f QWG £ w, ) dw] (2.106)

We examine the double integral in this lasj[ equation; interchanglzg
orders of integration and using a Taylor expansion for Q about w we may
write this double integral (denoted by L) as

L= [ f w5 42 L

A= dw" n!
me fw, 75y, 7+AT)(y —w)" dy] dw (2.107)
Now just as we defined the infinitesimal mean and variance in Egs. (2.98)
and (2.99) we now define the infinitesimal nth moments as

im [ "F(w, 7; 2.108
A"(w,T)é}%EL(y—w)f(w,T,y,f+AT)dy (2.108)
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v

which.are assumed to exist as finite
.and_A‘z(w, T)=0%w, 7). We note that the term for n =
m\.rolvul;g Ao(w, T) cancels the second (single) integral in
using the definition A,(w, r) and the e i

following expression: wpansion of L

_s A :
1= 2] ot A, ) €000

Let us integrate this last equation by parts (n times for the nth term)
(d"Q(w)/dw") dw. Since we have

where u = f(x, ¢; W, T)A.(W, 1) and do

f::rllllrsned twhfme and all gf its derivatives vanish rapidly enough at +o, the
uvlyItz drop out in our integration by parts. Thus only the te’r‘

—fvdu (and so on) remain, giving us e

_[ 1 &
1=[7000 £ CUE 14 it b, )]
Subtracting Eq. (2.109) from (2.105) we have
I—I=0=fw’ Q(w) {af(x,t; w, T)
— or
© (_l)n P

n! gw"

o

(2.109)

n=1

Now recall that Q(w) was an arbitrary function, and so if Eq. (2.110) is to

be satisfied, it must be that f = f(x, ¢; w, T) satisfies

a_f_ % (_1 n F
aT—nZ=:l )

n! aw™

[An(w, 7)f] (2.111)

of our approximations for
: -« queues, For
xgmple as we show below, we easily develop the fluid approximation by

of __

T Im(w, 1f]

to be

quantities. Clearly A,(w, 7) =m(w, )
0 in Eq. (2.107)
Eq. (2.106). Now
We arrive at the :

[A.(w, )f(x, t; w, T)]} dw (2.110) -
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jonzero and assume™® A,(w,t)=0 for n=3,4,5,..., giving

of _ _%[m(w, tjf]+%5%v~2¢[g2(w, 0f] e (2.113)

recall that As(w,t)=c"(w,t)]. This is known as a one-dimensional
okker—Planck equation. Both equations (2.113) and (2.102) are referred
to as diffusion equations, and the reader may observe that they are in fact
the forward and backward Kolmogorov equations, respectively. Equation
7.113) is the one we use? in this section; it is satisfied except where f
ontains impulse functions. We comment that even were we to consider
1l terms in Eq. (2.111), this would still be only an apprdgimation for
ueues since we have assumed that the underlying processes are continu-
us (which we know they are not)!

Let us begin simply by considering our deterministic fluid flow approxi-
ation to queues, namely Eq. (2.112). Here we see that only the
finitesimal mean of our process enters the picture, and this of course is
quivalent to that in the previous section where we replaced our stochas-
¢ processes by their mean values. Since we studied the number in system
(t) in that section, let us now take the unfinished work U(t) as the
related stochastic process of interest. Thus we consider

F(wo, 05w, ) =P[U@®)=w | U(0) = wy)

‘which describes the time-dependent distribution of the unfinished work
and where we have assumed an initial unfinished work of size wo at time
t=0. For simplicity we will assume that the mean arrival rate A{t)=A and
that the average departure rate w(t)=u (both constant in time); as a
result, m(w, t) is also constant and independent of both w and t. Now,
m(w, t) may be calculated (in terms of the system parameters) as the
average net rate of work accumulating in the system (for w>0) as
follows. Since we have on the average A arrivals per second, and since
each arrival carries with it an average unfinished work of magnitude %
{the average service time), and since we assume that the service facility
operates continuously and therefore clears work at a rate of 1 sec/second
(this, too, is part of our approximation, namely, that the service facility

* The justification for neglecting these higher-order terms is that we expect the conditional
Pdf to be tightly concentrated around the value w. See Exercise 2.23 for a third-order
approximation.

TNote that if m(w, ty=m(t) and o(w,t)=0c(t), then these parameters may be moved
Outside the differential operators. This is the case where the arrival and service processes are
independent of the backlog in the system, although they are permitted to vary with time.
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never goes idle), then we find that m(w, t) is a constant m given by
m(w, t) At&m At=E[U(t+A¢) - U@) | U@
=(A%-1) At
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and so
m=p-1
satisfy Eq. (2.112), and so we are asked to solve

oF(w,t) _ (OF(w, 1)
o ~1-p) aw

where we have simplified our notation by suppressing the initial condi-
0; w, t)=F(w, t). In addition, we have the two

tion; that is, we write F (wo,
natural boundary conditions, which are good for all ¢:

F(w,t)=0
F(o,t)=1

for w<0

waiting time at t=0 is w, with probability 1, namely,
. A O w<wp
F(w? 0)=Fo(w) —{1 W= we 2118

The solution to Eq. (2.115) is an arbitrary function of (w — mt), and once
we apply the additional conditions stated above, we find the unique

solution
w=(0

F(w, t)={FO(W+(1 o)) (2.119)
0 w<0

If we examine this solution, we see for p<1 that the unfinished work
(namely, the virtual waiting time) begins with probability 1 at a value w,
and decreases toward 0 at a rate 1—p, and finally at time ¢ = wo/(1—p)
yields a zero backlog that persists forever (i.e., we force this boundary
condition). On the other hand, for p>1 we find that the backlog begins at
a value w, and increases without bound at a rate of p—1secfsec. Clearly,
we have correctly described the tra
queues as described in Section 2.7 above.

Let us temporarily leave behind the fluid approximation and proceed
with an investigation of the diffusion approximation, which as we have
seen is a second-order approximation including the mean and variance of
the original process. (This corresponds to replacing the stochastic process
with Brownian motion [ITO 65].) Once again the process we choose to

(2.114) §
Now, not only f, but also F (with different boundary conditions) must

U (2.115)°

(2.116)
(2.117)

We have already assumed the initial condition, which states that the

nsient behavior of deterministic
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oi{ at is the time-dependent distribution of the unﬁnishe.d.vilork, tt(lia'lt_ is,
=F(w, t)=P[U(t) =< w], where we have sgppressed th.e initial con 1t191;
d will introduce it only as needed. Equation (2.113) is the ba51f: Partlla
ifferential equation of motion that we must solve; we note tha't it is also
tisfied by F with the appropriate bou_ndar'y conditions. Again w}el: a;e
ble to find the solution to this equathn in _the‘ case when bet ; e
finitesimal mean and the infinitesimal variance are independent of both w
nd t; therefore we assume

DIFFUSION PROCESSES

mw, t)=m

oi(w, t)=gc?

d we will assume that these are constants both in the original stochastic
;process U(t) and in our diffusion approximation to it. We now have that
must satisfy the Fokker—Planck equation as follows:

9F ___8F 1 ,8°F
. Maw 2% w2

at

e have already calculated the value for m as given in Eq. (2.114). For

'@ we carry out the following computation:

a? AtAVar[U(t+A)—-U®) | U@t)]
=E{[(U(t+A)~U@)—m AtF | U(t)}
=E{{U(t+A) - U®T | U@} —m*(Ar)?
=AAt’+0(At) (2.121)

This last line comes from the fact that with probability AAt (that 'is, the

probability of an arrival) the second moment of the change in the

unfinished work during (&, t +At) will be X2 (namely, the secqnd moment
of service time). Thus we have

- (2.120)

m=p-1 2.122)
o?=2x2

A general solution to Eq. (2.120) is

. 1 tpweweemt)oVt - _ w —'Wo—‘mt) .
E(w, t)'=E£w e dx = — (2.123)

where ®(x) is again the PDF for a standardized 90;m_al_ rgndom varia.ible as
given in Eq. (2.85). However, this solution is unsatisfactory since it
violates our boundary condition given in Eq. (2.116).

For the moment, let us simplify our task somewhat and ask mere.ly for
the equilibrium solution to Eq. (2.120) in the case when p < 1. That is, we



2.8. DIFFUSION PROCESSES 75

$,d from Eq. (2.91) that o> = 0%/t = (G D +(G/%). T.h.en,. we ﬁpd _that
continuous diffusion approximation F(w) for the equilibrium distribu-
for number in system is given again in Eq. (2.124).. As suggeste.d by
bayashi [KOBA 74a], we may discretize' this to obtain an approxima-
ion p. to the distribution for the number in system:

pe = F(k+1)~F(k)
=(1-p)p)

ﬁ = g 21-eNCHCH

Jote that the solution for p. reminds us of the M/M/1 fo.lution' given in
5q. (1.56) and, in fact, when C, =G, =1 (M/M/l.) then p is very cl?se Eo
[KOBA 74a). The predicted server utilization factor is 1—po=p;
owever, we know from Eq. (1.26) that the exact value for the server
tilization is p. From this observation, Kobayashi recommends an adjust-
nent to px for k=0, namely,

. {1-P o k=0
p(L=p)p)™ k=1

n [REIS 74], it is shown that the error in the equilibrium mean numl?er
ystem, N, due to this approximation is small for M/G/1 systems w.1th
»=1 and that it grows as G, deviates from one; however, the relative
rror in N goes to zero as p — 1. The -modification at k =0 reprfesents
ne method for reducing the errors that are caused l?y the compromise we
‘have made in placing a reflecting barrier at the origin. Another approe}ch
“to this problem is given by Gelenbe [GELE 74]; he pla<':e.s an absorbing
-boundary at the origin which collects mass (i.e., probability), allows 'the
~mass to remain absorbed for an exponentially distributed amount f’f time
‘(with parameter A, the arrival rate), and after this time', t‘he mass “‘jumps”
unity on the real line. The mass collected at the origin c.orrgsponds to
e probability of an empty system, and the jump to unity (at rate A)
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seek
F(w)={i{§ F(w, t)

where F must satisfy Eqgs. (2.116), (2.117), and (2.120). Clearly, the
left-hand side of Eq. (2.120) goes to zero in this limiting case, and we see
that the solution to the resulting first-order linear differential equatiop;
that also satisfies the boundary conditions is given by

Fw)=1-¢"" =0 - (2.124)

How good is this solution? We expect it should be a fairly good approxi-
mation in the heavy-traffic case, for then the backlog is typically large, -
and so the assumption that the service facility never goes idle is a fair :
approximation; the continuity assumption on the backlog is then reason-
able since the truly discontinuous jumps are small in magnitude compared
to the backlog itself. We have, in fact, already made a calculation for the
system G/G/1 in the heavy-traffic case; and the solution is given in Eq. |
(2.9); it is identical in form to the result given above in Eq. (2.124). In :
that earlier solution, the exponent had a value s, as given in Eq. (2.7),
namely, i

_=2i(1-p)

So==
0'42 +_0'1,2

However, this result due:ta. Kingman was for the waiting time, whereas
Eq. (2.124) is for the unﬁ&sﬁed work; these: two. quantities are the same
in the case of a first-come~first-serve M/G/1 queue. In that case we have,
o’=1/A% and F=1/); so -

o —2(—-p) _ —2(1~p)
TN+ (1/A) + A2 - AR2

So

However, in the heavy-traffic case p=AX =1, and so 1/A —Ax*= I/AN—x=
0, which yields

~*_“2(1 ~p) . orresponds to an arrival (of one customer) to the system. Th.e solution to
So= Ax? (2.125) is diffusion approximation for the distribution of number in an M/G/1

But, from Egs. (2.122) and (2.124), we see that s, is approximately equal
to the exponent 2mjo*=2(p —1)/AX>. Thus the diffusion approximation
agrees with Kingman’s heavy-traffic approximation to queues! :

Equation (2.124) gives us the diffusion approximation to the equilib-
rium distribution for the waiting time. An analogous result of course
holds for the limiting distribution of N(t), where now m and o> must be
calculated for the number in system rather than for the unfinished work in
system; in particular, we see from Eq. (2.90) that m =N(t)/t=(p— 1)/%,

1—p k=0
p* =1 Kip k=1
KB k=2

‘Where K, and K, are appropriate constants and § is as given earlier. It is
interesting to note that 1~ po* = p is the correct exact value fpr the server
utilization. Also the mean number in the system, N, predicted by this
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approximation differs from the known value
value formula in Eq. (1.83)] by p/2G,2.

Qtf $or; Interest to us is the time-dependent behavior of the; meap
walt. We have seen that Eq. (2.123) begins to yield th i i
for the waiting time distribution, o ed 1 vietaonton

n, but, as we observed, it viola
2 y s tes
:::)Cl;r:lclila;?é cfondt;tloE F(w,)=0 for w< 0; this boundary condition Willtg:
or Dy the use of our reflecting boundar igi
; at the origin. Bef
proceeding, however, let us consider a i : ; o,
' g convenient scaling transf i
We consider once agaj ic diffusi . " case
gain the basic diffusion equation f
: or the cas
constant arrival and departure rates (that is, A(r) = A () =pn) nameel;f
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as gi s .
[as given by the P-K mean relaxation time” of the system is approximately

R o? Ax?
Relaxation time = e =py = (2.130)

\ result of this form was noted early by Morse [MORS 55]. It is clear
at when p is near unity, then the relaxation time may easily exceed the
uration of a “rush hour” in practical problems. Also, note that this
elaxation time is related to the average wait, W, in an M/G/1 queue as
Bllows: o*/m*>=2W/(1—p).

If we consider the equilibrium solution, F(w')=lim,.. F(w’,t))
assuming m <0, that is, p <1), then the dimensionless diffusion equation
.129) yields -

95—__ oF 1 2 62F !
ot Maw T 55 ,_ (2.126)

subJe:c‘t to the boundary equations (2.116) and (2.117) and the initial F(w)=1—¢2 w=0 (2.131)
ith a mean value equal to one-half; this, of course, is the same as our
revious result in Eq. (2.124).

Let us now return to the transient solution of Eq. (2.120). We saw
arlier that ®([w — wo—mt)/oV1) given in Eq. (2.123) satisfied this equa-
on but unfortunately violated our boundary conditions. Let us denote

__m ’
t =52t (2.127) - his solution by a(w, t). Furthermore, we saw that the equilibrium solu-
” on to Eq. (2.120) was as given in Eq. (2.124). This leads us to consider
w="T, 2.128) e function e*™*a(w, 1). If we let F take on this value, then Eq. (2.120)
.o .

o ‘ v } ves
We measure time in units of ¢¥/m? gy
and w
(rﬁ:all that m <0 for p < o
dimensionless equation:

dau(w, t) _ m da(w, t)+l o Fa(w,t)

k in units of —g%/m 2
at ow 2 ow

1). The scaling operation produces the following

‘But this is the same as Eq. (2.120) except for the sign of the first term on
the right-hand side! This sign variation can be corrected by making the
change of variable from w to —w. Thus we see that for any function
(w, t) satisfying Eq. (2.120) there must correspond another solution of
e form e*™°F(—w,t). Now since the diffusion equation (2.120) is
linear, it must be that any linear combination of these two solutions must
also be a solution. In particular we wish to consider the combination
(w, £) ~e>™"*F(~w, t). Now we are in a position to take advantage of
our earlier solution a(w, t) in Eq. (2.123), which, when in this combina-
tion, quite fortunately also satisfies the previously violated boundary
L condition (2.116). Thus our time-dependent solution to the diffusion Eq.
significant” values for the (2.120) is [NEWE 71]

utrju(t )for measuring time is : ‘

t) occur durin : \ —Wo— o [—W—Wo—

s to the conclusion that ti: aligz?cl F(w, t)=q)<w—~w)_e2mw q)(_w—ﬁms = (2132

ot aw’ " 2 (aw')? = (2.129)

where now F =F(w’, ¢') is the distribution of U'(y’ é—(m/o-’)U(mzt/crz)

Once we solve this Jast i i
form (o130 equation we will have solved alj €quations of the

At‘Y}?i sw;’l:) iSI;)torll1 ggfvgie ‘syolutlon :'io this dimensionless diffusion equation.
2 » W€ may draw an important conclysj
fact that our transformation given in Egs. (2 ;1)27 D128 'fl‘f?m o
yield a dimensionless equation indepegdeflt of r)na::d(zo.-gst)bdld e that
the n.atural unit in which we should measure “ “valogs for s
ul:ﬁmzshed work is —a*/m and that the natural
o°/m”. That is, significant changes (~~¢*/m) in
time units (~o?/m?, This leads u
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8.0 [_ t'wo cases wo =0 (dashed curves) and wo =2 (solid curves). For p>1,
see the unstable transient behavior of F(w, t) in Figure 2.11; the same
= 00 £=0.01 cases are shown (wo =0 as dashed curves and wo=2 as solid curves)

2 40 ™ 0 L he range 0<t‘s 10. . . - '
i e (It is truly amazing that such a simple solution to our diffusion equation
20 ‘t 2.0 f=10 xists in this case since it must contain the elements of our fluid approxi—
0 |_\\;I | L 1.0 2\ ation, as well as our limiting equilibrium distribution, and must give the
w0 S me-dependent solution for all values of p. We note that the first term in
e solution involves a normal distribution with variance o’t and with
flg N £=20 San wo+mt. For p<1 (m<0) we see that this mean drifts to the left
40} t =005 P L} L] d corresponds to our earlier solution using the fluid approximation as
\ Y ven in Eq. (2.119); for p>1 (m >0) we see that the mean drifts to the
20 ' : 20 ¢ =50 ght again as in Eq. (2.119). The second term in our solution corresponds
AN A ! ! L w 1-0 [ L a normal distribution drifting in a direction opposite to the first one
T2 3 4 5 0 12 3 4 ¥ t with an exponentially decreasing (increasing) weight for the case

<(>)1. It is the second term that provides the reflection off the
undary at the origin. Moreover we note that as t— o, and for p<1
<0), both of the ® functions go to unity leaving us with the equilib-

Figure 2.10 Time-dependent behavior of f(w, t) for p<1.

This solution corresponds to the case of constant-arrival-rate and

constant-departure

af we is
obtained

has evaluated the

: Ire-rate processes and is good both for. p=1and p=1
given in te.rms of a distribution function then our solution is
by integrating over this distribution.) Kobayashi

pdt f(w, t)=aF(w, 1)/ow for some examples of p<1

um distribution as calculated in Eq. (2.124)! On the other hand, when
>1 (m>0) we get behavior that does not settle down; in the following
section we discuss this behavior in the context of M/G/1. The reader is
feferred to the excellent monograph by Newell [NEWE 71] for consider-
ably more discussion of these matters. For now we wish to apply our

(Figure 2.10) and the PDF F(w, t) for p>1 (Figure 2.11). In Figure 2.10
we see the approach of f(w, f) to its exponential limit for 0<t=$ with

.

diffusion approximation to M/G/1.

8.2;'[175 2.9. DIFFUSION APPROXIMATION FOR M/G/1 [GAVE 68]
0.4 k= In this section we study the time-dependent behavior of the unfinished
0.2~ work U(t) for the first-come-first-serve M/G/1 system. In this system,
10 U(t) has a distribution that is the same as the waiting time distribution
3 08 W(y). We will use the continuous diffusion process as an approximation
§ 0.6 0 our random sawtooth process U(t), and in order to distinguish the
0.4 approximation from the true process, we denote the former by Uu(t). In
02 he case when p is close to unity this is a good approximation. Much of
10 his miaterial is based upon the work of Gaver.
08 E The general solution we obtained in Eq. (2.132) in the preceding
0.6 B section certainly provides the solution for the queue M/G/1. Nevertheless
04 | £=10 In this section we choose to study the behavior of M/G/1 using transform
0215 -~ echniques for two reasons: first, because it gives an alternative approach
e L1 L lecds 0-the solution and moreover provides additional insight into that solu-

ion; secondly, so that we may compare it with the exact time-dependent

'gure 2.11 - Time-dependent behavior of F(w, 1) for p>1. - olution for M/G/1, which is given only in terms of transforms. Much of
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the algebra and “routine”
Exercise 2.21.

Using the notation and results develo
therefore proceed to examine the beha
tribution of waiting time F(w, t) where
boundary conditions are repeated here:

F(W, t)=P[Ud(t)SW I Ud(0)=Wo]

Flw, 0):_{0 w<wo

1 WEW()
E(w,t)=0 for w<o0
F(w,t)=1

Also, as above, the infinitesimal
of both w and t, and have values

m=p—1

2_ o2
where 7

p=AX.

Furthermore, excep
satisfy the Fokker-Planck equation, namely.
oF _ _

ot ™

traI:: forder t9 extract the behavior of F we find it convenient to use
e 5 (f)irm methods much as we did in Section 1.7. Therefore, as carlier
efine the double Laplace transform (on both w and t) a; ’

OF 4 2 8F

aw i 5 (2.133)

F** A © —st ° —rw
t5)% e [ e arw, v ar (2.134)

which we assume exists certainl
‘ y for Re (s)>0
apply this double transform to our p et Gt o must 33).

artial differential equati
As developed in Exerci : ‘equation (2.133).
this transform: cise 2.21 we arrive at the following expression for

F**(;, §)= %[Mﬂ]

o'l (r=r)(r-ry) (2.135)

where

r, r2=__n’_;[1:t(1+2sc;r2>1/2]

o m>

(2.136)

development of these results is relegated to

Qed in the previous section we|
vior of the time-dependent disﬁi
F and its associated initial an

mean m and variance ¢ are independent

t where F takes jumps, this diffusion process must

2.9. DIFFUSION APPROXIMATION FOR M/G/1 81

2d where r; takes the positive square root and r;, the negative; also
- {rz

n "

t is worthwhile to compare F**(r,s), which is the solution for our

jiffusion process, with the analogous result for the exact M/G/1 queueing
ystem. We denote the latter by F¥sn(r, s), which is defined as

p<l1

b1 (2.137)

Fidton(r, s) & j e™E[e™"| U(0)=wo] dt (2.138)
o

This result was given in Section 1.7 as Eq. (1.97) and takes the form

{r/m)e™o—e™
AB*(r)—A+r—s

where now 7 is the positive real root of the denominator. We notice the
remarkable similarity between the solution for the original discrete
stochastic process in Eq. (2.139) and the solution to the diffusion approxi-
mation given in Eq. (2.135).

We are now interested in inverting F**(r, s) on the transform variable r
in order to obtain the time-transformed density for U(t); this we define as

Fon(r, S) = (2.139)

F*(w, s)éj e EW1) 4y (2.140)
o aw
In Exercise 2.21 we show that this leads to
" - —r;e"w T <0 [4 <1
sF*(w, s) {_herﬁw <0 p>1 (2.141)

where we have assumed temporarily that wo=0. The reader should note
that the dependence of this last equation upon s is through the value of
the root . (i=1 or 2) as given in Eq. (2.136).

Let us now comment on these last results, We begin by recalling from
the method of collective marks (see Section 1.7) that the Laplace trans-
form of a pdf evaluated at some (real) value s is equal to the probability
that no Poisson-generated catastrophe will occur (where catastrophes
occur at a rate of s per second) during a time interval whose duration is a
“‘random variable chosen from the pdf. In a similar fashion it is easily seen
that the quantity sF**(w, s) in Eq. (2.141) may be interpreted as the pdf
" for the state of our diffusion process if it is observed at the instant of a
catastrophe where catastrophes occur at the rate of s per second; in
" particular, if wo= 0 then the state (value) of our diffusion process Ua(t) at
the instant of a catastrophe has an exponential density as given by the
right-hand side of Eq. (2.141). In the case when wo>0 then a similar
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BO \

: owéver from Eq. (1.87) we have that the variance of the equilibrium

easiey of ot Tireshon oo oy e a8 oplicit expression fot ‘ aiting time, which we denote by ou’, for our exact process is given by
1 >

density of our diffusion process where it can be shown that this pdf will b
a linear combination of exponentials. [We see from Eq. (2.139) that th
solution to our exact process, namely the distribution of U(t), enjoys n
such simple interpretation.] Now we permit the rate of catastrophes to
approach zero; therefore our random observation time (i.e., the time o
occurence of a catastrophe) approaches infinity. This implies that s — ( §
and so we are interested in

2=[ Ax? ]2+ A (2.146)
T 2-p)] T30-0)

ow as p— 1 we see that oo’ — ou.”. Thus our diffusion approximation
3es'an exact answer for the limiting mean wait and an answer fo; the
driance of this wait that improves (to perfection) as p approaches 1 from

W ' .

eﬁt us now make use of our results to examine the nme-dependrernt
chavior of the mean waiting time, namely E[Uu(t) | Us(0)=wo]. To
btain this expression we first look at its Laplace transform,

imsF*(w, $) =lim =~ P[UL() < w | Us(O) = wo] = -

which is nothing more than the final value theorem for Laplace trans
forms [KLEI 75]. In Exercise 2.21 we find for p <1 that this leads to

: . “eE[Ua(t) | Us(0) = wol dt
El_r}(}sF'*(w,s)=—20Lz1 e*me (p<) (2.142) .L e "E[U)| Us
which is the pdf corresponding to the equilibrium solution we found
earlier in Eq. (2.124) as of course it must. (For p > 1 we find that the limit
is zero indicating that no equilibrium solution exists.) Substituting in the §
values for m and o we see that the equilibrium distribution for the

diffusion approximation to the unfinished work is given by

rom the definition given in Eq. (2.134) and from the moment.-geﬂerat:ﬁ
}operties of Laplace transforms we see that the explrfssu)tr}llewz\rtial
ooking for is obtainable from —dF**(r, s)/or |r=o. Thus taking P 0 we
ifierential with respect to r in Eq. (2.135) and then setting r=
btain (see Exercise 2.21)
_ _ ) v,
!1_1:2 P[Ua (t) =w I U, (0) = Wo] =1~ €~2(1~p)wnxz (2143) J.we«s!E[Ud (t) I Ui (O) = Wo] dt= g‘;""‘;ﬁ‘l'gs';' N (2147)
so long as p<1 [Eq. (2.124) again]. This distribution of course is °
independent of wo and corresponds to the diffusion approximation to the
equilibrium distribution of waiting time for the stable M/G/1 system
under a first-come—first-serve queueing discipline.

From Eq. (2.143) we immediately recognize that the mean unfinished
work E[U.(t)] for our diffusion process, which also represents our ap-
proximation to the mean waiting time, has a limit for p<1,

- Let us study Eq. (2.147) by first considering the case p.< 1: We already
know that as t — ® the equilibrium mean waiting time is given thrqugh
q. (2.144). The time-dependent behavior in this case is obtained
hrough Eq. (2.147). For the case p<1 and wo=0, we have from
ixercise 2.21 that

lim E[Ua(1)] = 52— (2.144)
00 2(1 - p)
and this is exactly the P-K formula for the mean wait W in M/G/1 as given
in Eq. (1.82). Thus the limiting mean wait for our diffusion process is
identical to the limiting mean wait for the exact process (for all p<1M
The limiting value of the variance for the wait in our diffusion process,

which we denote by oy’ is easily calculated from the equilibrium distribu-
tion in Eq. (2.143) as

- 1
j e~E[Ua(t) | Us(0)=0] dt = ——

rns
o 1

g
== sm{l+[1 +(20.2/m2)s]1/2} (2.148)

- I we invert Eq. (2.148) we will in fact obtain the time—erendent
behavior of the mean waiting time in our diffusion approximation to the

fésults calculable for M/G/1 by inverting Eq. (2..139). G'aver [GIIIXV_E 3213]
has made this comparison and we reproduce his nurperlcal resu ts in the
examples below. In these examples the Poisson arrival rate is taken at

_2 2 . - 3 . - — .0
ou,’ = [in‘—x_?] (2.145) '=0.95 customers per minute and the expected service time is £ =1
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g 12 Compgrxson of' mean wait versus elapsed time for exact and
diffusion analyses: p<1,
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minute; therefore p=0.95, Specifically,
A,

the three cases are

b(x)= e~ x=0 (2.149)
B b(u)=36 x=0 (2.150)

C. b(x)=o.1[41 e]
+0.9[(6x) e™*]  x=0 (2.151)

v iast ;s, I;& iX1ts]‘ler:::p(c:fr1entlal, B is Erlang distributed (with eight stages), and
an i = :

D, In B 1e;cponentlal (mean=4) and a four-stage Erlang

-12 we plot the mean wait in minutes as a function

(mean
of time j iffusi i
In hours for the diffusion approximation and for the exact result

We observe once apa;
Obse ce again for these M/G/1 systems that the g
equilibrium waiting time is rather slow [that is, from Eq. (I;p;gé(i;h“f: ::Z
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mat the relaxation time is 12.67, 7.13 and 23.43 hours for cases A, B, C,

spectively].

Let us now consider the time-dependent behavior of the mean waiting
me for the case p > 1. Temporarily we will consider once again the more
neral case of arbitrary we. For p>1 we have from Eq. (2.137) that

=r;. Thus from Eq. (2.147) we seek to invert

—rwe

e’
St

m Wo
POl
order to simplify our task we will study the asymptotic behavior as
‘t— 0 by permitting s->0; this allows us to make the replacement
ri=2m/o* from Exercise 2.21. Thus inverting our expression we get the
asymptotic (t » ») time-dependent behavior for the mean wait con-
ditioned on an initial wait of wo, namely,
)‘7 o 2P~ Dw /axE

E[Ud(t)l Ud(0)=Wo]—>(p—1)t+Wo+ 2(p—1)

m (2.152)

This result demonstrates the linear growth of the mean wait predicted by
the fluid approximation for the case p>1 and large t, and provides an
interpretation for the effect of the second term in Eq. (2.129) on the
mean wait when p>1. As we did for the case p <1 we wish to provide
some examples for this case to compare exact time-dependent behavior
with our diffusion approximation to that behavior. Again we choose
wo=0, and therefore Eq. (2.152) becomes

LA (2.153)

A
 2(p-1)
Observe that this approximation includes the effect of the variance of the
service time, an effect often omitted in such approximations (as for
example in [COX 61, p. 66]). The examples here once again come from
Gaver [GAVE 68), and we consider the case A=1.1, £=1.0, and
therefore p=1.1. In Figure 2.13 we show the time-dependent mean
waiting time (in minutes) versus time (in hours) for cases A and B from
our previous examples [see Eqs. (2.149) and (2.150)] and compare the
exact results from Eq. (2.139) with the diffusion approximation given in
Eq. (2.153). Once again we note the excellent approximation provided by
our diffusion process. Note ‘that cases A and B give slightly different
results due to the variance term in Eq. (2.153).

Let us return once again to the time-dependent mean waiting time
conditioned on an initial wait of zero for the case p <1; that is, we are
interested in the expression. E[U.(t) | U.(0) = 0] whose transform is given

E[U.(t) | Us(0)=0]— (p— 1)t
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in Eq. (2. i

ot gql(lzatli;l:). rl}}r:u;;artlculgr we now wish to give a dimensionless form for

accora o .Eqs (2W182\;'IH scale our time and unfinished work functions

oo to B - (2.12 ) and (2.128), respectively, and in addition wi
orm variable s (whose dimensions are 1/sec) as follngzlll

ra

2
o
§=—3s
m*

(2.154)

Thus we may rewrit . .
tities as e Eq. (2.148) Involving only properly scaled quan-

[ Etvwe | v =oar=— L
0 ] t S’[1+\/1T2s'] (2155)

g >
USlIl the ﬁrlal Value theOI €m as ear lle] we Obtalll tlle lllllltln epr €ssion
g

lim E[U(') | U4(0) = 0] = lim 5"

s'—0

1 1
sTL+vV1+2s7] 2 (2.156)

Thus, as In Eq. (2.131) wWe see a am tllat th»e ethbllun] mean watt 18
? g
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Figure 2.14 Mean wait in the scaled diffusion approximation to M/G/1 (p<1).

btain the time-dependent mean wait for our scaled diffusion approxima-
ion to the M/G/1 system as given by (see Exercise 2.22)

E[UL0) | Ux0) = 0] = (1+5) 2000 - 11-5 -3 A3.Y)

 where ®(x) is given in Eq. (2.85) and P(a, x) is the incomplete gamma
unction defined as

2.157)

P(a, x)éf(l_aj,‘.o eVy*dy (2.158)
and I'(x) is the usual gamma function (see, for example, [ABRA 647).
This scaled mean wait is plotted in Figure 2.14. This figure gives a
~ universal curve for the diffusion approximation to the scaled mean wait in
the queue M/G/1; from it, we could have obtained the diffusion approxi-
mations in Figure 2.12.

A compact and interesting discussion of these and other asymptotic
relations is given by Cohen [COHE 7 3]; for example, he studies further

* details regarding the approach to equilibrium.
This ends our specific investigation of the diffusion approximation for

- the stationary M/G/1 queue. In the following section, we return to the
case where the arrival process and departure process are permitted to

vary with time.

(

2.10. THE RUSH-HOUR APPROXIMATION [NEWE 68, 71]

In applying the diffusion equation (2.113) we have so far emphasized
the case where the infinitesimal mean and infinitesimal variance are both
constant, that is, m(w,t)=m and o*(w, t)=a”. Of course, this implies
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here U(_t) is the average unfinished work at time ¢. From Eq. (2.160) we
see that U(t) =—a?(t)/2m(t), which confirms our earlier choice of scale in

p(=Mp)<1, o evious studies, we kn, ) _
[KLEI 75] Wa:l rziee\?ol;g:jbrtzlm dC!IStHbution will exist; omv::flll a;fllif(t)?e case q. (2.128). Thus our condition becomes

the other ha nd, most i a discussion of this equj] ume 1 )

. » Most . quilibrium b dot A dmit —

time, and it is these we wiey 5, J2CUIng systems a ehavior. Op 20(0) 4% )_;Et; dt( )‘[mz(t)] <1 (2.162)

S€ we wish to discy

§§ more fully i :
The interesting behavior of course is when p(t) is close to 1 [that is, m(t)
close to zero], in which case the first term is usually insignificant com-
pared to the other; using our expression for m(t) the condition therefore

d Of L o) &
I 3
ot ="m() T +Tﬁé becomes

where w h (2.159) 2 d
© have set m(w t)=m(t) and ow, 1) = [_1%5 Ld(tt—2 «1 (2.163)

We note for p(t) close to unity that the left-hand side grows arbitrarily
large, and so we can readily imagine situations in which this condition will
not hold. Then of course our quasistationary solution will not describe the
true picture; in fact the solution for U(t) given above for this case
predicts that the average waiting time will grow to infinity at an enormous
rate as p(t) — 1. We know this cannot be the case since the waiting time
can grow no faster than the rate at which work enters the system and this
rate is finite (in spite of the fact that the system is overloaded).
Thus we see that as long as the time variations are slow and small, our
quasistationary solution Eq. (2.160) will approximately describe the wait-
| ing time distribution in the case p(t)<1. However, as p approaches and
then perhaps exceeds 1, we find that the actual waiting time cannot grow
as fast as the quasistationary solution would predict. Second, we observe
that for stable queueing systems most of the delays arise because of the
stochastic effects of the variability in the arrival and service processes.
Recall from Chapter 1 that as long as the input rate is less than the
‘capacity, no backlog should form when the flow is steady; thus, the
backlog we see with unsteady flow is caused by the “random effects.” On
the other hand, from Chapter 1 we see that if the input rate exceeds the
capacity (p >1) then a huge backlog will develop in time and in such a
situation the stochastic effects become unimportant! We might therefore
_expect that thé fluid approximation given in Section 2.7 should describe
the major part of the growth of delays and of queues for p>1. In some
sense we have already anticipated this result for the constant-parameter
solution in Eq. (2.132) when p > 1. There we saw that the waiting time
behaves as a normal distribution with a linearly growing mean and with a
- standard deviation that grows only as vt; thus the dominant effect is given
by the mean with the fluctuations about that mean reducing in relative
size, In the case of nonconstant parameters such as we are considering in

gs 'bemg “quasistationary.” istati i
nished ok o eLomazy. ary distribution for the yy.

uasistationarity becomes Xation time; thyg

ldU(t)/dt[ (relaxation time
TG «1

. 1 g
e R
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V is i i imately of the same order of
Otgniiil?dees Otiet:lswlenef‘ilzghttia?rithzzzzistatio)r/lary Izred}ilcti?n f(:r thte
e ime Wi i i m its true value. At the time t=—t,
g tlmt;w:ilg‘zgglg z?lf‘flri:,silregg ::grk to be approximately the mean of
o expecéo ¢ mely, —a*/2m(—to); however, since we fqund it con-
Eq" & 1)" rntao use):’,—cf/ m as the unit of unfinished work %n our. scaled
emex'ltr;aisfe Eq. (2.128)], and since Newell also makes this choice, we
;_vec?: actll1cc)>ose the following approximation for the mean work at t =—to,

g —o ("4) “ag (2.165)

—— = = —_— — 0

Uew=2 =\
i klog should grow by an

- i time from —f, to O the average bac ' :

’ Duc?lrxlft t::prz)ximately equal to the work that arrives during (—to, 0) ltesg

?1:2, work discharged (1 sec/sec) during this interval. Thus the expecte

*increase in U during (—to, 0) is :

A/ w()]to—to=ato® = Us

: Therefore, we have defined a natural time unit t, and a natural backlog

virtual wa,liting time) unit U,. It is significant to note that the average
: -1/3

: changes in proportion to o™ . o o N

. ba;rol\oyglet usgget a feeling for what the diffusion pred.lcts in thli ;1'921)1.1s1'tr11(:e1

ft‘hrough saturation. The equation of motion is given 112) qu' (Z(t > a,t s(land

i imation in the vicinity t=0 is m(t)=

‘ = p(t)~1 our approximation in y t=0 i . ‘

zc()tr)eov‘;(r)we have already assumed that the'mﬁr;ltesmail vall;l.agc?h elrsl

essentially independent of ¢ in this region, that is, o (t) =0o"), whic

this section, a similar statement can be made for queues that have beep
saturated for some time. Thus we can estimate the system behavior at
both extremes [p(t)=p <1 and p(t)>1], and it is our intention in thijg
section to describe what happens between these extremes.

In Figure 2.7 we illustrated a rush-hour condition and in parts b and ¢
of that figure we gave the flujd approximation to its queueing behavior,
We wish now to study the diffusion approximation to the onset of a rush
hour; that is, we wish to consider the case where p(t) grows with t from
the stable case [p(t) < 1]through the critical value [p(t)=1]and oninto the
overloaded case [p(t)>1]. This “transition through saturation’™ as ‘det
scribed by Newell [NEWE 68] (whose development we follow herey -
corresponds to the onset of a rush hour. Let us define our time axis such
that p(t) passes through the critical value (unity) at t=0; thérefore for
t <0 we have a stable case, whereas for t>0 we clearly have an unstable

in Eq. (2.160) will approximately describe this system behavior. To grow
slowly enough we mean that condition (2.163) is satisfied. However, as
mentioned above, as p(r) approaches unity this condition must certainly be
violated and then the system behavior will depart from that of the
quasistationary solution and the waiting time will not be able to grow as
quickly as that result would imply. Well beyond t=0 we expect the
waiting time to grow much as the fluid approximation describes.

As Newell suggests [NEWE 68], let us make a Taylor expansion for
p(t) about the time origin, that is
gives oF aF+02 &°F

2,2
a’t
T ot Maw 2w’

2!

. We have written this in terms of the distribution functlion rathetlr tha;gt:)hz
forming this last equation
f. We have prepared the way for trans _ int

' g?mens?onless qufation and so we define the new s.caled Var}abl‘is tt'ontlot;
~and w’ =w/Us; thus we now have F(w',t’) as giving the distri ’u1

S U'(t") = U(t/to)] Us. The scaled equation then becomes

o OF__, oF 1 9F (2.166)

ot Law 2 (ow") . .

We see that we have successfully scaled this equation to eliminate its

In the vicinity of the critical value (t=0) p behaves approximately as
1+at, and we will assume that this is a good approximation in the
transition region between that point where the waiting time behavior
begins to depart from the quasistationary solution and before it begins to
behave as the fluid approximation would indicate. If we use this linear
expression for p(t) then condition (2.163) bécomes '

2
o’(t)

’ 3|« 1 . e problem; these parameters
i ot dependence on.the specific paxzameters of th_ p2/3 /a*® and Uo=o*’/a".
that is, are now contained in the scaling factors to=0c iti that
( ‘72) “a 4 “Thi tion of course is subject to the boundary conditions tha
1> =1 . - This' equation . i-
d o ' (2169 F(eo t’)q=1 F(0™, t')=0; also for ¢« —1 the solution must be the quasi

i i i ' t)=1—e>". As Newell points out, there is no
where we have assumed that o (t)=0" in _this vicinity. When stationary solution F(w',t)=1—e
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Figure 2.15 The diffusion approximation to the mean wait for
through saturation.

known simple analytic solution for Eq. (2.166) subject to these condi-
equation (that is, it is scaled to

-tions. Fortunately this is a “universal”
represent any set of parameter values),
once. Furthermore, if we carry out this

plot the average (virtual) waiting time (i
normalized time scale .
numerical computation is g
of which one, the quasistati
left asymptote for our diffu
we also see the fluid appr
which forms an approxim
tion. From Eq. (2.160)
merely

()< =0 (1)

V0= Zmt

which when normalized with res
scaled time t' becomes merely [for p(t)=1+ar]

(t)_ 1

U, 2t

the transition

_ n units of T, seconds) versus the
.A d.lagram showing the results of Newell’s
tven in Figure 2.15. Here we see three curves,
onary mean wait in the region ' < 0, forms the
s19n approximation (which is the second curve);
ox1mgt10n to the mean wait in the region t'>(
ate right asymptote to the diffusion approxima-’
we see that the quasistationary mean wait is

(2.167)

pect to U and expressed in terms of the

(2.168)
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quation (2.168) could also have easily been obtained by inspecting the
rm for the quasistationary solution F(w’', t') given earlier as an expo-
ential. For the fluid approximation we see for t'>0 that we are ag-
-avating the work deficit at a rate at sec/sec, which gives an accumulated
ork backlog of size at?/2 by time t; normalizing this with respect to U
d scaling the time axis to ¢’ we easily see that the scaled work backlog
as a value (¢)°/2 at time t'. This then gives us the shape for the fluid
pproximation to the mean wait. Once we are deep into saturation (when
e probability of the system emptying is insignificant) then our remarks
rom previous sections assure us that the change in the work backlog will
e normally distributed over any interval of time. In fact we see that the
‘average change in this backlog (under the diffusion approximation) will be
the same as the average change predicted by the fluid approximation, and
‘this calculation is™ just the integral of the overload during this time
interval; this last statement does not depend upon the fact that the
‘overload grows linearly in this region. As Newell has shown, the distribu-
tion F for ¢ <-—1 is essentially of the exponential form given earlier,
hereas for t'>1, F begins to approach a normal distribution whose
mean grows as predicted by the fluid approximation! The reader is urged
to consult the fine monograph by Newell [NEWE 71] as well as his earlier
article [NEWE 68] for more details.
<../And so we have a rather good understanding of the behavior of the
waiting time as the system enters and continues in the rush hour. We see
the important role played by the fluid approximation in this case. How-
ever, we again caution the reader that when the approach to saturation is
slow, then the zero waiting time predicted by the fluid approximation
prior to saturation is badly in error since the system has time to follow the
quasistationary mean wait, which grows to large values in such a case.
Nevertheless, the average change in queue size will follow the fluid
approximation once we have been in saturation for a time‘on the order of
one normalized time unit; the effect of a slow approach to saturation
will be an offset between the diffusion and fluid asymptotes for ¢'>1.
We now inquire into the waiting time behavior for the entire rush-hour
cycle. This in some sense requires that we investigate the inverse to the
problem we have just studied. We expect that the fluid approximation will
be an accurate prediction while p(t)>1 and as the system makes the
transition back down from saturation into the range p(t)<<1 then it will
settle down into a quasistationary mode. However, at the time when p(?)
first falls below 1 we recognize from the fluid approximation as shown in
‘Figure 2.7 that the backlog at that time has a maximum value and
therefore there will be a “long-tail”” effect until the system has a possibil-
ity of going idle. During this long tail the behavior will be dominated by
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the fluid approximation i
» > that is, there wil] b
waiti i i i ’ hat ap
e tzigl txme. with a decreasing mean given by that approximati
hfion ex;t)lrel:ls then the Quasistationary solution tak ot her
¢ stochastic effects are responsi
2 ‘ ponsible for the occ
and Iijeltag/s. In his monograph Newel] postulates a paré
g the rush hour merely as an €xample and sho

_)_{1,‘_ (c) )

2\ N\
d)

Figure 2.16 An intermediate fluid approximation. (a) U(t); (b) true burst
arrivals; (¢) “smoothed” input; (d) intermediate fluid approximation.

of b i ) i
ehavior may be observed, depending upon how???)ypfgiﬁefﬁ typis
roug

th .\ .
e transition regxon., and these are discussed in [NEWE 73]

represents the work backlog at that instant. If no other work arrives then
this work is discharged at a unit rate until the customer departs; his time
in system corresponds to the “long tail” of our fluid approximation. This
is much like Figure 2.7 where the total positive area under the curve is
considered to have arrived in zero time, giving rise to a step in Figure
2.7(c) rather than the smooth rise to its peak. Of course if more
customers arrive before the backlog is discharged then the overload
continues and takes vertical jumps equal to the service time of each
-arriving customer. What we are in fact describing in terms of this
“instantaneous” fluid approximation is the unfinished work U(z) itself! In
Figuré 2.16 we give an example of U(t) and directly below it we show the
impulses describing the arrival of work at the customer arrival instants;
‘the number next to the impulse gives its area and is equal to the number
of seconds of service brought in by each arrival.* Now, let w(t) be the

* Thus U(t) may be thought of as the output of a linear system whose impulse response is a
linearly decaying ramp (slope, —-1) with unit height (that is, a small triangle) and whose input
is the sequence of work arrivals as shown in part (b) of Figure 2.16.
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stochastic process representing the arrival of work to the

sequence of impulses such as in Figure 2.16(b); to be precise we hat
’ ve

o(t)= nzo Xnllo(t —1,,)

where, as
o an,d uol(l;;l:iils, ;;.eand'tﬂ,' re}:;esent the service time and arrival time for
unit impulse function i i
Lot us oo is : occurring at the instant vy =
sider a continuum of ¢ iate” flui imation,

- on Intermediate” fluid a

pac arrpeatlween the original extreme fluid approximation in' which tj

st Ivals are averaged over an infinite interval a it

i;l which the burst arrivals are averaged over a
» DO average at all). Thus let us consider an avera

A. The conti i
ntinuum of smoothed Input functions is defined as follows:

R (S SO PR

Thus we are taking the im
an interval of length A ¢

they provide another point of view for
and the formation of queues and delays.

In th ini _ .
approxifn::in(:zmt?cgh Cbapters Of. this book, we find use for many of these
generating clever niques. It.IS perhaps fair to say that this field of
involved o queue.approx1matlon‘s to the complex stochastic processes
advancemem ° ing systems will prov.ide the greatest impetus to the

Of queueing theory and its applications in the next few

system, that is,
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ars; There is great challenge and reward lying in that direction and the
eader is urged to meet that challenge (and thus reap the reward).
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EXERCISES

approximation is too lar
. e .
time for M/Gy/1. ge by no more than a mean Interarriva]

2-2. Con 1 . [ T R
sider a G/D/1 system in which the constant service time h ‘
as-

value a+c¢ and the j

€ Interarrival time j ; s ;
between ¢ and a+b+c, where q, b € 15 uniformly distributeq
constants,

(8) What relationshi
ship must exi
SYStemn is 10 be stabfur exist among the constants if the
(M) Find W,
(¢) Find w,,

(@) In solvin
. g part (c), prove th .
unique in this casy p at the solution to Eq. (2.35) is

him? Why
24. i
4. Consider a G/G/1 system such that, for 0=sa <1
0 t<o0 o
A=< a 0=I<T, B(x)={0 ¥*<—(1-a)loga
1 To=y ' 1 ~(1-a)loga<x

(@) Find 7 02 £ o2
» Jay X, 0%, and p in terms of o and T,

. W i
®) Il%c;tv&r/een @ and T, must be true for stability('; hat rel,atlon
© f:;?vg:]e l;lpper f‘E)ound Wy in terms of a and T

value o i ;
- To, find that value of a which minimizes
?3 II::((:E glns v:llue of a, find Wy in terms of T,
1S value of «, find that value of hi
’ T .
Wu. What valye do we now get for Wy, ?0 hich maximizes

EXERCISES 101

.‘ Consider a G/G/1 system with bulk arrivals, where the average
bulk size is g and the variance is oy. Assume that A(t) is

i-MRLA, where A = 1/T is the mean arrival rate of groups. Find
upper and lower bounds on W, the mean time a group spends in
the queue until the first of the group’s members begins service.

Let us derive Wy in an alternate fashion.
(@ It is clear for G/G/1 that ao (=P {[arrival finds system

empty]= P[§ >0]) is such that 0<ao<1. Show that E[§*] is
such that y*=aol ¥, From these, establish a simple lower
bound on I. Also give a simple lower bound on I in terms of

L
From (a), establish a lower bound on the mean residual life

(b)
of the idle time in terms of A and p only.
(¢) Using (b) in Eq. (1.132) prove the basic upper bound in Eq.

(2.22). :

Consider the waiting time variance, o3’.
By first cubing Eq. (1.125) and then forming expectations in

(@)
the limit as n—> c, express o’ in terms of the first three

moments of f, X, and L
(b) From (a), proceed as in Sections 2.2 and 2.3 to show Eq.

(2.42).
We wish to prove Eq. (2.47) for the queue y-MRLA/G/1.
(@) Let w+% have the PDF ‘S(x) =P[w + % <x]. Prove that
Py >y1= [ T1-AG+]1dS@)
(b) Show that the idle time I must obey

1.
P[I>y]=5;P[y>y]

(©) Using the y-MRLA properties of A(t) show the following,
using (a) and (b) above:

f “PLI>x] dx = yP[I>1]

(d) Form the mean residual life for I from (c) and show
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2.9. Using an approach similar to that i i ‘ EXERCISES 103
tin Exe ’
where A(t) has DMRL, that when tz(;ase %8, prove for G/‘G t @ p'(k)
. ’ : () Find c(k).
M dx< "1-A(x) d (¢) Assume wo=0 with probability one. Find and draw p. (k) for
¢ P> 7770 1A & n=0,1,2,3.

(d) Write the equilibrium equations for p(k).
(e) Using z-transforms, solve for p(k) explicitly.

2.10. Now we consider a G/G/1 system where A(t) has IFR

(a) Beginning with the e i
‘ xpression for P[I>¢]
Exercise 2.8, find the failure rate for[ L ] from part o

(b) Using the IFR property for A(t), show for &0 that Repeat the previous exercise for

At oA | o = L omaet
- D10 1 <x
() From (b), show that the f 3 X A=y:  1=i<2 Bl= 2 1=x<2
nonpositi\;e: ¢ following determinant must b 1 2=t 31 2;x
S '[ P[I>x]dx J.tp[1>x] dx Repeat Exercise 2.14 for
ct 0
. . =0 _[} k=0 [ k=0
[u-aene [t-awpa al=f; §23 bto={; I

For the example of Section 2.6,

(a) Give an upper bound on W.

(b) Give the strongest lower bound you can for W, using the
techniques from Section 2.3.

(¢) Find W exactly (use the results from Exercise 2.12).

(d) From (c) show the final result for IFR/G/1,
“P[I>x] “1-—
.[ B dst: _‘_?(x) dx

2.11. Once again, we consider an IFR/G/1 system.

(@) Prove for any random variable X wit

PDF F(x), that Consider the G/G/1 system of Exercise 2.4 with the values for a

and T, as found in parts (c) and (e). If we try to solve this system
by the method of Section 2.6, what problems do we encounter?

h second moment X? and

ff[l—F(x)] dx dt=—X_;

(b) Using the final result from Exercise 2
prove Eq. (2.50). .

Express Eq. (2.132) in dimensionless form.

10,
and (a) above, (a) Find an upper bound in terms of Wy for the root o

associated with G/M/1.
(b) Repeat for G/M/m.
In this exercise, we develop some of the material for the diffusion
- approximation to M/G/1.

2.12. We wi§h to solve the system given in Eqgs. (2.77)-(2.78)
(la:) Find P(z)=Y%_o p(k)z* in terms of p(0). o
(b) Evaluate R(O) and find {p(k)} explicitly.

2.13. Repeat th i .
2.61; usingetlslzhlﬁgﬁ c:if Exercise 2.12 (for the example of Section (a) From the Fokker-Planck equation (2.133) form F**(r,s)
2.14 . od of spectrum factorization. given in Eq. (2.134) and show that
-14. As in Section 2.6, consider a discrete queue for which ' ) Ci+rCame ™
ok -
F**(r, s) 02[r2—(2m/0'2)r—(2/0'2)s]

where w, is the initial backlog, and C; and C; are constants

0 t<0
A=<« 0=t<2 B(x):{o x<1
1
with respect to r.

1 2=t 1=x
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(b) Clearly, r; and r, as given in Eq. (2.136) are the denominatg
roots. Also define n as in Eq. (2.137). Establish that n>(

(¢) By setting r =, find a relation betwe:
R een C
d W}}at value must sF**(0, s) take on? Hand G
(e) Using (d), solve for Ci. From C; and (c), solve for C W
have now proven Eq. (2.135). v e
() Let wo=0. Expz:nd F**(r,s) in partial fractions, Observin
that r,r, = —25/02, prove Eq. (2.141). &
(®) Show that lim,.o r,=—s/m and lim, o r, =2mjo? : - =
(1.1) Frorg (g) show that Eq. (2.142) must hold for p<l1
g; gy direct calculation, prove Eq. (2.147). .
or wo=0 and p<1, prove Eq. (2.148 i =
and rir;=-2s/c* again. o » noting that n =r,

(k) Show that the scaled version of . L
(2.155). n of Eq. (2.148) is as given in Eq.

(M Forp>1, prove Eq. (2.152).

Szhow that Eq. (2.157) is the inverse of the transform given in Eq
(K.155). For this, use the common properties of transforms (see.
[KLEI 75] Table L.3) and the helpful transform pair

1
s 1

—7==2ae*"[1-®(av2i)]
vt a+vs
Consider'the third-order approximation to Eq. (2.111) in which
we permit the first three terms An(w, 1), for n=1, 2. 3 to be
nonzero, find assume all the rest to be zero (n>3). Le; us study
thlS. §ol}1t10n for the unfinished work in an M/G/1 system in
?q)ulllsbl:lum (p=1—¢ where 1 »¢> 0) [COHE 73]
a ow that the general dimensionless see ]

oy - E ' . a

(2.128)] equilibrium solution must be [ e G127

F(w')=Ci+ Coe™ + Cye™

where s, and s, are the roots of

and
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‘ (b) Clearly, the two roots have opposite sign. Let s:<<0, 52>0.

Show that
Fw)=1—e"" w'=0
(¢) Consider the approximation
si=a+by+cy’

and find the best values a, b, ¢ (note that |y|« 1).

(d) From parts (b) and (c), find an explicit form for F(w') and

compare to Eq. (2.131).

Consider a diffusion approximation to U(t) for M/G/1 [HEYM
74]. Consider a busy period initiated by a customer whose service
time is xsec. Let g(y;x), G*(s;x), and g(x) be the pdf, its
Laplace transform, and the kth moment of the duration of such a
busy period when it is approximated by a diffusion process with
mean m =p—1 and variance o”> = Ax’. It has been shown [COX

65] that

2
G*(s;x)=exp {—':—f[l —4/1 +2::;zs]}

(@) Find g(x) for k=1,2,3.

(b) Let g(y), G*(s), and g be the pdf, its Laplace transform,
and the kth moment of the unconditional busy period dura-
tion under the diffusion approximation. Express g(y) in
terms of g(y; x).

(¢) From (a) find g for k=1,2,3 and compare to the known
values of the moments of the exact M/G/1 busy period.

(d) Express G*(s) in terms of B*(s).

(¢) In what way is the expression in (d) superior to the corre-
sponding expression for the exact M/G/1 system?

For the input work stream shown in Figure 2.16(b), redraw parts
(c) and (d) of that figure in the case when the smoothing “filter” is
such that it spreads a unit impulse uniformly over the two unit
time slots surrounding that impulse (the height of this rectangular
pulse will therefore be 3. Repeat in the case where the unit
impulse gets spread as a small triangle rising linearly from zero at
isec prior to the impulse, to a value of 2 at the time of
occurrence of the impulse, and then dropping linearly to zero at
3 sec following the impulse.



