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Nobody likes to wait in line; however,
others. In fact, some of us dislike
something

some of us dislike it more thay
it 50 much that we are willing to dq
about it. In order to improve one’s position in line, one may
cheat, bribe, push, or quit. A more cunning action might be to join a class
structure that is afforded preferential treatment at the expense of others,
Such schemes are referred to
the subject of the present chapier.

Immediately when one

such that some well-stated and realistic cost
Rather, what

performance of such systems.*

Our purpose in this chapter is to discuss g few priority systems of
interest (particularly to the author) and we in O way attempt or profess
to cover the material in this field in any degree of completion. Rather, we
raise questions and Mustrate methods of approach
meaningful and general. These considerations lay the groundwork for
some of our computer applications in Chapters 4, 5 and 6. For a much
taore complete work on the subject, the reader is referred o Jaiswal’s
book on priority queues [JAIS 81

that we fee] are

3.1. THE MODE]L,
A queueing discipline is nothing more than a means for choosing which
customer in the queue is to he serviced next. This decision may be based

*On the other hand, a literature on the optimal control of queueing systems does exist.
Here one is concerned with adjusting the service and arrival rates of the system under
various cost structures. This material is summarized in [PRAB 73] and [CRAB 73], both of
which contain useful bibliographies. Applications to closed queueing networks
[TORB 73] A recent approach s also reported in [REED 74].

106

are given in

as priority queueing systems, and they form

abounds is a vast literature on the construction of mathemati- 3
cal models for ingenious priority systems, followed by an analysis of the -
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any ot all of the following:
n an

\ ’ olative aretval times for those cus-
1. some measure related to the relative arrival fimes
" tomers i € queuc; o o
o Y alue, estinawe, pdi; of the service e
2. some medsure (exact value, estinaw, |
. required ot the service so far recewa,
B N . - . . . ‘o _} ‘”}.
| 3, or some function of group membershi

i ferred (0 as a priority qucing discipline,
e third case ts usually referred to as a pxxo‘_{ltlx queue T ’l\n ©
T b i this chapter we use the broader definition to muuugd( y of
oug ; : ‘ : om0 ncluds any of
o ath tEhree discriminators. Examples of queueing dxsup\iu:u that Eﬁr%
it 5¢ > (HISCH v T At e tirst-
i kthO e ipon arrival time are first-come-first-serve (FOE ‘7, last cfm st
o 1(; ":FQ) and random order of service. Discrimination on the b&:;{%
erve (LAY, AU [ANAom orae . . : e e e \1:1
T time only may take the following forms: shortest-job-first (\ :
e eet] b-first (LJF), similar rules based on averages, and so on. Order
est-job-n (LIF), s1 1 v ver  and oo on. Ore
lofngcrvifj‘“ based on an externally imposed priority class (atlrgi;t;lr t ay
ke many forms i head-of-the-line (HOL) system
z > > head-of-the-lin
take many forms as, for example, t‘h@. oac-of-theine (10L) system
described below. Mixtures of these disciplines are alsc common,
escribed b V. Ixtures ] . :
discuss one such mixture in Section 3.7. s setof P differcnt
We assume that arriving customers belong to one of a o). We aiomt
t SCY ] = ] .. . We ¢
priority classes, indexed by the subscript p (p=1,2,. . ado
e con tio }that the larger the value of the index associated with the
ority. o, is iori sociated with that
iori ' i is the so-called priority assc !
up, the higher is t ) :
D oup that B iori re given preferentia
is, ¢ TS ity group p are g
; 18, customers from prior
Eont tn o average over customers from
i r another on the averag
treatment in one form o ave pers fron
: iiority group p— 1. We consider only equilibrium results here; ho o 1‘),
. systems below in which some groups have no stable
etavion o orpems | o ch a Hmiting stable behavior, and it is
“behavior while other groups do reach a i 2 st
> consde SUCHN CAases.
stable groups that we covsider in o
e o Dan artiving customer s assigned a set

In general, thea, we assumc : ieris ot
f pat;am'-ic?r“ {either at random or based ou some property 0}1 iz}
L S L > ) " A e i ] ) ’ lL\
kustomer) that determiac his relative position in the queus throug 1 fhe
cisic ‘ fis position may vary s

is] v1 as the quoueing discipline. Tt
ecision rule known as the quoueing ! 1 may o
@ function of time owing to the appearance of customers of hllghe'(4 :
: ’ / v rln mrlevreife ja oo ~niate 5
ower priority in the queve. At time ¢ a customer’s priority is caleu atu;;l
r prio the queas, 4  customer’s petec s
a function of his assigned parameters, his service time an.d !?xs iy ‘ ;
System. In fact we associate with a customer from priority gr;) 1P ;;
E « - - ) o LA ;
call : iority f i ime t. The er the value
Rumerically valued priority function q[,(i).at tm;c il The ?liiler’s ot
btai is functi igher is said to be the custor rity;
Obtained by this function, the higher s priorit
‘ . i 3 > > er for service,
Whenever the decision tule is called upon to sellecr, a uJ.StO@F r :([)) R
the choice is made in favor of that customer with the largest g, (1). tie
are broken on an FCFS basis. ‘ 1 i
We consider a fairly general model based on the system M/G/1 (




108 PRIORITY QUEUEING

'some cases, however, we constrain the system to be of the form M/M
g‘toﬁih;;i (:;xi?;sg,r\g/spgc;n;;;lizel to' (I,/(T;/l)' Thus we assume that customéis;
com priority group ri : er in .d '} 018501 stream at rate A, customers per.:
seco e;lde, ¢ stomer rom ihl'S group has his service time select :
p itly from the distribution B,(x) with mean X, sec. We deﬁﬁg

the following:

A=
s 3.1)

fo v A -
el (3.2)
o = A%,
. (3.3)
p =X gglpp (3.4)

The in retait f i

buxsy (Stoer!]())lr;atauon 0§ p here is, as usual, the fraction of time the server ig

e Cufi_uas p< J,).— Moreover, p, is the fraction of time the SCIV(;; is

ooy it 'Lcm(.ifb imr.n group p {again for p<1). If a customer in the

proce q ue. emﬁg served is liable to be ejected from service and returned

g ue waenever a customer with a hig

to ¢ a higher value of priori

e ‘ OL priority appear:
queue, then we say that the system is a preem.ptivey plzi)*it;

ueuei stem; i such i
queuemg sysiem; if such is not allowed, then the system is said to b
S s 0 be .

nonpreempti 3 .
faci}li)ty atix g;elft;’niy ;ﬂe customer is allowed in the (single) service
i , then when there exists a t N

. . tie between custo G e i
broken on a first-come-first-serve basis mers, the tie s
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u vie a CUSWOmMET's average waiting time (in queue) and a
SO osystem {gue : o

HE plus service), respectively,

oug W+ X We make the COTFESPOT
OUily Ciasses, namely
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P . ’ R
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Y Que 10 cusiomers w
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_equation
Jish the cquations for the
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say); we shall refer
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the average del
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basic obscrvation from which we may establish a set of

s that define the quantities W, or Tp.

by considering the case of ronpreemptive systems and estab-

average waiting times W,. We study the system

m the point of view of a newly arriving customer from priority group p

to this customer as the “tagged” customer. We

that the first part of the tagged customer’s delay is due to the
- he finds in service; this delay will be equal to this other
's residual life, the distribution of which will depend upon the
o which this other customer belongs. Let us denote by Wy
ay to our tagged customer due to the man found in service.
ince p is the fraction of time that the server is occupied by customers
com group i and since we have a Poisson process, then p: is the
robability that our tagged customer finds a type-i customer in
srvice. In Section 1.7 we stated that with Poisson arrivals, the mean
tesidual life of a service time as observed by an arrival is equal to the
econd moment of service divided by twice the first moment; these

We begin

statements permit us to calculate Wo as

ZoAX
— Z _.%C_ wma  (3.7)

P=1

“where x: is the second moment of service time for a customer from

group i.
Now we consider the second component of delay, namely. the delay

“due to customers found in the queue by owr tagged customer who receive

service before he does. We define

LA s . . S
N, = the number of customiers rom. group found
in the queue by our tagged customer (from
group p) and who receive service belore ou
tagged customer does

o~
: R
oC
~—

A N,. Since the service time
for any miember from group | s drawn independently from B.(x), the
rerage delay to our fagged costomer is given by

-« 8econd component of av

P

ZJ )ZiNiv (3'9)

Pt
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We mayv make similar statements regarding the rhird component (the
delay to our tagoed customer by later aerivals than he). Thus we dgﬁne
My the number of customers from group { whao argive
to the system while our tagped custom
group p)is in the queue
hetore he does

o
[

{from

(3.10)

and who receive service

with average M. Thus we see that the third component of average delay
is similar to that given in Eq. (3.9), Consequently, the total average defay
in queue for our tagged customer may finally be written as

) o
2,0,

;
Wo=Wot D 5N, +M,) p=1,
i)

B.11)

For any given priority queueing discipline the solution procedure then
contains two steps: first, an evaluation of the averages N, and M, and
second, a solution of the resuiting set of equations (3.11), ‘

In the general case both N, and M, may be expressed in terms of the
average waiting times W, and therefore (3411 leads 1o a ser of stmultanes -
ous linear equations in the W.. The simple approach herein described for
calculating the average waiting times will be used in later sections of thig
chapter and is possible since the average of a sum is always equal to the
sum of the averages. Higher moments are not so easily obtained and so in .
the next section we consider an approach for finding the distribution of
waiting time for various priority groups. i

The computation for preemptive queueing disciplines is similar to the
above, but involves the additionai complexity regarding how a customer
recovers when be reenters service after having been preempied. Three
cases are usually identified here. The first, where a customer picks up
from where he left off (with perhaps a cost ir fime o cither the customer
or the system), is known ag preemptive resine. The second and third cases”
assume that the customer loses credit for alf service he has so far
received: the second case assumes that a returning customer starts from
scratch but with the same tora) Service time requirement as he had upon
his earlier visit, and this is known as preemptive repeat without resampling;
the third case assuncs that a new service time is chosen for our reenter-
ing customer and is referred to as preemptive repeat with resampling. (We
study some cxamples of preemptive resume systems below and in-
Chapter 4.)

3.3. THE DELAY CYCLE, GENERALIZED BUSY PERIODS,
AND WAITING TIME DISTRIBUTIONS

In this section we consider the analysis of “delay cycles,” which permit
us to calculate the Laplace transform for the pdf of “generalized” busy

INEER

¥, -

=
\

2= Time

nitial detay Delay busy period

Defay oycle

Figure 3.1 The delay cycle.
| i ai ace transform for the waiting
’periods. From this we may obtain thc1 Lapl‘;ﬁéx ;32575 oo fhe watine
» ity (as in Section 5.10 of Volume E175]

ime density (as in Section 5. . RLEL 7o for a number of
e disciplines. The concept of delay cycle analysis sucms/ to ‘
e with Gaver [ : 62] ( sed a notion known as “‘comple-
4 iginated with Gaver [GAVE 62] (he used a HEEE[L e
OF . ’ ) o - w k
: ime””). Similar ideas ared in Keilson [ ,

jon time””). Similar ideas appea . Keilson | e
t‘lggsic server sojourn time,” and in Avi-Itzhak and Nc?or [/}S{I TE]ONW

ed tf;e “residence time.” This work was extended by M1h<,r
o le) that we re.
u7] and it is his nomenclature (delay cyka,) that we adopt. e;:i e 31
131 delay cycle is similar to a busy period and is s.hownl in fgdurati;)n
’h delay cycle Y. consists of two portions: an lmtx.a‘l delay o Juratio
Y eand a delay bﬁsy period of duration Y,. The initial (ie?y 150:551:); Z
' i espond to the completion

i that may correspon ) me
ome special interval o thor “epectal
ay correspond to som

tly completed customer or may > som r “special”
:srk yThe cli)elay busy period corresponds to the 5:rv1cnxjg of ~'Ol;j(ll"?-di¥le
: t.)mers and may be viewed as a sequence of sgb-busy peviods™; he
dela tod ends when there are no more ordinary customers .tO :
A ' here over that of an ordinary busy period is

iced. The ralization By e
serviced. The genera itrary distribution for the initial delay,

o H >y it an arh
that in the former we permit an a 5 stributio ¢ Tnitial delay,
hereas in the latter we require that the initial aglay be a s e

distit > individual service times making up the

distributed the same as the individua ‘ e
elements of the delay busy pertod. Tn all cases, however, we have

: wnt I ine agt Dus

Y. =Y.+Y,

i in » a Poiss ess; for pur-
The ordinary customers arrive according to a Poisson I)r()'wbb; raic '
A I at such customers arrive at a .
f this i : I assume that such custo
Poses of this section we wil . ! me e ataraie A
'I\)’Vc note that when the initial delay terminates, there may have ac -
5 ' ! H @ ~ q =9 .,‘ « W:
‘lated during this initial delay a number of ordinary customers awd

A b-bus Y that mter me w 1 Fe( re service an arbitrary
i f ot d to s C i
al of ti S req v i '
X eriod is that interva v ' service i i
& . ¥ }1/ all those (hlS descendents ) who enter the Syste du £ NIS service time «
Customer and a b S S

VS IEl c pdf for the
ice ti : | his descendents. [n the systern M/G/1, the p T th
during the service time of any of his descenden a busy period. A sub-busy period is

iod is the same as that for .
paration of a sub-busy period is the same as tha the period. See Chapter 5 in [KLE]

said to be “generated” by the customer who initiates
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service; each of these will generate his own sub-busy period, which,

; faken,
together. form the delay busy period. ;

Now for some notation. p
the transform for the pdf of service time and busy
respectively, and the basic equation rel
(1.89). For the random variables Y, Y,,
Go(y), Gu(y), and Ge(y) along with the tr
pdf’s) denoted by Go*(s), Gy*(s), and G

We assume that we are given Gy*(
it. We are interested in solving for G,
functions B*(s), G*(s), and Go*(s)
will be required to evaluate G*(s) from B*(s). The
here are rather abbreviated sinc
Section 5.8 of Volume [ [KLEI 75]. we begin wit

v ()= E[e ™™ Let Ny be the number of ordina
during the interval Yo.

on Yo and Ny to arrive at

ating these two s given as |

s). respectively.

the simple expression

Ele™ | Yo=y N,= nl=[G*(s)I"
This last follows from the
generated by each of the arri
distributed exactly the sa
first on N,

vals during Y,) are independent and each is
me as a busy period. We proceed to uncondition

Bl [ Yo=y]= 3 163y 0 o
n=0 .

- e*I.A“AG*(S)]y

and finally on Y, to give

fa

3 i AG*(s) ]y
u)_j e (s 2]y f/f’.Go(‘y}

72 as the transform of the pdf for Y, and we
= Go™ (A = AG*(s)) ww (3.17)

Now for G, ), Proceeding ag sbove we have

Ble ™I ¥Yyey Ny=nle o TR
and removing the conditions on Ny and Yy we have
PR 3 i - {Ay)"
ok R 9 0 e v (AY) AY e
R S e O LY AT e YV dAGy)
Jyeo n=o 7l )

reviously we had defined B*(s) and G*(s) a‘s'
period durationg

PR

and Y., we now define the PDp»
ansforms (of the corresponding

$), or if not we usually can calculage 5
*(s) and G.*(s) in terms of the knowy
where the relation given in Eq. (1.89)

‘he derivations we give
e they closely parallel the development of
h the calculation of

Ty customer arrivalg'
We condition the transform we are seeking

fact that all n sub-busy periods (one is

3.4 CONSERVATION LAWS 113

which yields the result

‘ 3.12) i (3.13) provide the defining equations for our

ohas Bas. (3.12) and (3.13) PIOV.I . '

Thlz];owgs where, of course, G*(s) is given in Eq. (1.89), that is,

un

» G*(s)=B*(s+X—AG*(s)) (3.14)

' i /o is distributed as an ordinary
in the special case when Y, is !

wetorrlx?éf’qlservice tIi)me that Y. will merely be a regular busy period and

S S

Ba ill then reduce to Eq. (3.14).
" E’%&,%ﬁhﬁl sooix see, the delay cycle analysis is an extremely powerful
5 - AS § S N

. 4 .
sethod for obtaining results in many queueing systems, especially thos
m

with priorities.

3,4, CONSERVATION LAWS

In most physical systems, “you don’t get something for nothing.” So

( . . ‘S
; too in priority queueing systems—preferential treatment glv]en to on‘e cl:sse
‘ : se
i e expense of other customers. In a real
i stomers is afforded at the expen . : . :
' ?}fecrlxl we “borrow from Peter to pay Paul.” In this section we investigate

. oy S o svstems.
such invariances or conservations within prior 1ktly ?lliuinft;ftunﬁnished
i i based upon the fact tha
Our conservation relations are se fact that the uriinished
! i iod is independent of the or
work U(t) during any busy peri Js in ot rice
s0 long as the system is “conservative.” By conservative we mean that n

i ed withi system; for
~work (service requirement) is created or destroyed within thetsylseaw: o
“example, destruction of work would occur if a customer we:fa e} Y ‘/i e
: ' ) s e ' M . 1 A 2321 .( 13 )I" m
system before completing his service and the creation of wc g

ing i i ¢ face of a nonempty queue.
correspond o a server standing idle in the face of a n‘o‘nuu_p{yorl e
k v ‘ ing systems in this section. TI
Thus we counsider only work-conserving systems m this se

3 ' i 10W SO
. simplest case to consider is the FCFS system about which we kn

much already. Most priority queueing systems are (‘T:E)a,j!f? :2:3:,5{2,13

systemn and we see below that its performance enters our cons
relationships in a very natural way. e tme will indeed
We begin by observing that the zirfrrr,la.u,rl,r)‘}1, of \;;a:.z ,_P.r NQ o inceed
depend upon the order in which service IS, gwei}‘.. ovevu, \;V‘m, how
that so long as the queucing discipline selects g,»u;’s:,.}t,c,; s S(:;ﬁ e
independent of their service time (or any measure of faer » v,,‘km, .i L; O
the distribution of the number in the system will !‘;'e :/(11J<,a5;fi}1;c‘:),i:r;:U L:;,w o
service; the sume will also be shown (¢ be true { or zsw; uem,;z c\:z{zibd;g h (,
Cuszom/crs. Let us consider the M/G/1 qusu\c.‘ Epr é,l’x]f, Syb.wf\?j /i;(/; " {;m
basic relation given in Hq. (1.81). The definition fmr G Wi % ¢ ,:;4‘,; ne
of . Let us chang

: ;
'+ hehind by the depart
Mumber of customers left behind by the dey
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our poini of view now and redetine this quantity io refer o the number of
customers {eft belund by the departure of the nth departing CuStomery
(thereby allowing arbitrary order of service), Similacly b, i to be
interpreted as the wmber of customers m‘riviug ¢ g the sorvice of the
nth customer to be served. It is clear that the relationship (1.81) Now
holds even for these more general queucing disciplines (and reduces tq
our former interpretation for the FCFS system). The identical Steps (see
[KLEI 75)) that take us from this relationship to an cxpression for the
z-transform [Q(z2)] of the aumber of customers in an FCES system wil]
now take us from that defining equation to O(2) for a system with
arbitrary order of service. Thus we can state for any (ueueing discipline
whose decision rules are independent of 4 Customer’s service time that we
must have the following as the z-transform for the number of customerg
in system;

o (L-p)(1-2z) ,
Q=) =B —hz) gzl 2L (3.15)
where the notation here is the same as in Section 1.7. Therefore we
immediately have complete information about the number in systen,
Bear in mind that this independence of order of service for number in
System has only been shown to hold when the decision rule is itself
independent of any aspect of service time of the customers.

Let us now conserve the unfinished work U(t). From its definition, U(t)
is a function which (a) decreases at a rate of 1sec/sec whenever U(t)>0,
(b) remains saturated at zero when it hits the horizontal axis, and (c) takes
vertical jumps at the arrival instants in amounts equal o the service
requirements brought in by the arrivals. Thus it is cleqar that regardless of
the order of service (service-dependent or noty Ult) will not change; this is
true for G/ Gl For M/G/1 the tollowing conservation law was first stated
and proven in [KLEI 64a, 65]:

The M/G/1 Conservation Law., For any M/G/1 system and any non-
preemptive work “eonserving queueing discipiine it must be that

> pPWy
S o <1
P [#4) p =

[Recall from Section 1.7 and Fq. (3.7) that W, represents the residual life
of the customer found in Service upon an arrival’s entry.] Thus this
weighted sum of the waiting times W, can never change no matter how
sophisticated or elaborate the queueing discipline may be. Let us prove

the validity of this conservation law. If at time ¢ there are N,(t) customers -

b CONSERVAVTION | AWS H

MAOT B e

it the ith of these 17 = 1.2,
from group p in the quoue and i the ith of these [1o= 1, . B
e & *% n NPT - IR N ane on e
1 > aoservice time g, and if ve represeots the work yer 1o be done

have & sery LHNe X5,

. . idual service tme) then we may si
i service at time ( (that s, his residual service Hie) then we may say
man i g

() = xo+ Z Zl Xip
P

g ice, Tt cxpectations oo both sides
eoardiess of the order of service. The expectations on b
regardiess of ¢

we have

!
[

EUWH:WWZhLPDMHHM%EMJ

We obscrve that Elx,]= %, independent of the index i, With ¢ taken at
¢ b < | Aip

: T A ¥ 7 FNY : . e
random (and large) we may write U=lim... E{U(D)], whgh will be th
fimiting average of the unfinished work. Thus we may write

3 % [
U= Wo’*“iimz_, Z, PN () = n, [%,
Eaet R IFTNEE)

.
= Wot Y 5EIN,]

pal

ﬁbwever Little’s result [Eq. (1.31)] tells us that E[N,]= A, W, since this
‘fesult is valid for individual priorities as well. Thus we conclude that

P
U=ww2mm (3.17)

P

Now since U is independent of the order of ﬁervice we may as \ivell usi
our FCFS result, which states thar for Pc.‘,z:ss?n arrivals the fleerflgy
unfinished work (the average virtual waiting f.éﬂ'}c‘) ,mﬁuwst. equal Ehf ivtff g
waiting time for customers, which we 4c*f‘t Hy ?ﬂ{‘ Ih:g rpwnmy zafwi ;
in Eq. (1.82); bere the second moment of service fime is easily expressed

in terms of the second moment associated with each group’s service time,

6

namely

and 5o we may write

(887
=
o
&

I VAN v’)A {
0w

© " Here we take ELx,}= W, where W, is defined in Egq. (:9.7)4 'I"hxs thl\txcft()r(}fi[g},{, ::/;x:hwt
the average unfinished work for the customer in service, is c'oxilcct Lv;]:m(;r (WC; a“.timc' "
are not averaging over customer arrival tnstants, but are axcraglng “‘“_ ) i y - and for Ehis
We know, PJisson arrivals also obscrve the system unAuomAﬂy over a nm‘&:( ! f
feason our result is the same as the mean residual service time seen by Poisson arrivals.
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W we use this value for O i Eq. (3.17) we have the conservation Iay,
given in Eq. (3.16) (where for e=1 the value of = is obvious), QED,

puts a iincar equality constraint on th

5 the case G/G/1
vation law has been extended [SCHR 70] to
This couscry:

. also
ing the Poisson arrival assumption but alsc
1y are we dropping the Poiss
where not only are we dropping
Thus the conservation law ;

average waiting times W,

s at is required is
jon regarding independence is I'C(lU“'ed’fvzh;ﬁw;;(;/ef we first
¢setof | 0 355“’?’."“.9”, Itii( “butions exist. In the above proof for M/G;
We see that any attempt to modify e | that equilibrium distribt
queueing discipline so as to reduce one of the W

P : however, that
. ing Eq. (317)1
. . . . Poisson arrival assumption following Eq
v Will force an increase In giogsed the
some of the other We; however, this need not be ap “even trade”
the weighting factors for the W

s AT'€ gene ~4I I ](Sel S 9« (l )] 3/8T, a (lfhl gl €S us ”l(f ge era 1
dlst . : a 200 C ( /( / - S v hled VETSI0
T é, nera N eq]l tion
y 1IiCt, NOW mn 1}']6 S

Since

pecial -+ of the conservation, namely
case where X, =% for ali p then the conservation Jaw gives (for p< 1) . The G/G/t Conservation Law ’
§ | . _ 3.22
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Z AW, :]‘:E Xp =X (3.19) ¥ oy P
p=1
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8 AW,
2 EIN]=32

p=1 D
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in the case M/G/ . N disciplines in
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among the Uaste processes, and o this case Hie termy pW is replaced by
Elxw /T

3.5. THE LASY-COME-FIRST-SERVE QUELUEING DESCH’LQNE

Let us return to the M/G/ | queue again
service is given to the most recent arrival
we have P =1 (ao externally

and consider the case in which
On a nonpreemptive basis. Here
assigned priorities). This order of servige is
not uncommon, strange as it may appear; for example, any push-downy
stack operates in this fashion. Since the decision rule
service tme, we sce immediately that the average queue size and the
avetuge walting time must be the same as tor FCFS [sec Egs. £3.20) ang
(3.21)]. Moreover, we know that Bq. (3.15) gives the distribution of
number in the system. However, we suspect that the waiting time dig.
tribution differs from the FCES case, and it is this which we solve for
below. Qur intuiton correctly suggests that this rule wil] give a large
variance of waiting time even though the average is the same ag FCFS.

This queueing discipline lends itself especially well to analysis. We
observe that a new arrival is in no way affected by the queue size he finds
upon his eatry to the system; only the customer found in service can
make him wait and the balance of his delay is due to arrivals that enter
the system after he does but prior to his initiation of service. This is a
perfect set-up for the delay cycle analysis of Section 3.3 where the initial
delay is the residual life of the customer found in service and the delay
busy period is the interval required to empty the system ot all those
arrivals who follow him prior to his entry into service, at which point his
service commences. The Laplace transform for the residual Ife pdf is
given in the footnote on page 16; we rewrite this

notation for delay eycle analysis as

is independent of

transform using our

.
$)

G()*(S) == Li%

Moreover, G.*(s). the Laplace transform for the delay cycle pdt, is given
in terms of Go*(s) and G*(s) in Egs. (3.13) and (3.14). The delay cyele .

here corresponds to the waiting time for our
system, and so using these transform relations we may write down the
conditional transform for waiting time as

Efe™™ | system busy upon arrival]= (3. *(s)
= C)“(;*(S +A A0 *(S ))
_L=B*s +A —AG*(5))

[s+A

custormer in this LCFS

306 FHEADSOW THE S INF

viq

ahifer £l
. o ) DY w1y SHms il
'I‘hc” {ron i ("_I_r) WO Ay SuRpiicy b

arrivall =
| svatem busy upon arrivaly

FEle ™ o

. . o L obability | —o

F now uncondition this expression, we Hnd that with probability ¢
- M ih 2y o
i of zero and with probability p be has a

our customer has a watfing time

iting time whose transform 1§ given in this tast equation. Thus
atng

W

(3.24)

S N SWT 7; . .
WH(s)=E[e ™ 1=1-p ’rS v

1 this is the result we were secking. We note that it differs sigmh'czu;fly

. N ) ¢ . 3 RS PN 2q.
?r(])m the Pollaczek-Khinchin transforim equation for FCEFS given in Eq
T Z

e

mean and variance of waiting time

ol

35). In Exercise 3.4 wc compare the : ; vaiting time
él'btstzes'e two systems. We find that the first moments are of course ;hg
sZme (as we stated ecarlier) but that the variance tor LCES 1s larger than

' for FCFS. N
forLet us now consider the case where an external priority structure is

imposed.

3.6. HEAD-OF-THE-LINE PRIORITIES

Among the queueing disciplines that impose an exlt.er:m(l P}{)g;);lty :,g;;fy
ture on the arriving customers, the head-»ot—the—d ine : m;ur 51 Thi.s
_fqueucing system is perhaps the mfvst common 3/1; _rr‘xyosowpc ura l.jy e
system, first studied in 1954 by Cobnezm [,}CO.BH 54 j 19 An ) ‘Th; by the
name of strict priority queueing or 'nxw privrity quiL':f,(l‘n?.uc ,1Cé,\/£di{!<,
structure is given in Figure 3.2 ]!r* this x‘.y:t@im ;uﬂi:r:::;tf{hc gn;ub “:)

> priority groups and are strictly separated o e hasis ot group [0
‘ :;h%;ftheyyi)ek)rng_ Thus an arrival from gx;oup ‘pjj)ms\ tth to;sopo’fﬁtl:‘c?
queue behind all customers from group p \_?xﬂd m'gnu;raltu u o f\.;\;, o
1 {und lower). The value of one’s priority in

t
from group p— o
craing cons we may take the priority

customers . : A
this case remwains constant i time and so

Server
o .

Queue \

X,

Figure 32 Head-of-the-line priority queue.
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function to be

Qolt) = p (3.25)

. Letus now use the method of Sedion 3.2 to derive the ave
time W,,. for members of the pth priority group in the case of a
preemptive HOL system. Equation (3.11) o

is our point of departure
\ 3 o B s (> Y 2 1 N \/ L ']
ve must cvaluate the two functions N, and M, that represent «tgd
e

average number of customers from priority group i who get served be
our tagged customer (from group p) and w ent in the qe®
upon his arrival (N,) or who arrive while
Because of the strict order of queueing and
customers within the same
FCFS rule, it is clear that

he is in the queue (M,,)
que under the assumption that
priority group get served according to ap

Ny =0 =12, p—1

M, =0 i=1,2,...p

All cus hi

: IO (ust(‘).mcrs from group p and higher who are present in the queue

dgj]. ;)ul tcigge‘d’customer’s arrival must certainly get served before he
©5; from Little’s result we know that on the average there will be A\, W,

customers f he | ; j
] erm the ith group present in the queue when our tagged
customer arrives and therefore, e

NI.,, = )\i‘/vi

[AS IS PR > ~ .

Similarly all customers from groups p+1, p+2 P who join the
svs ’ N 5 . . T

L)y “tem rwll{lg our tagged customer is in the queue will also be served
DeELOTE 18 since nds : A ‘ ‘ wewe an
ciore he 1) simce he spends on the average W, sec in the queue and
Qr Froogmey P N1y Yo e 3 3 5 i o V
since each group’s arrival Process s mdependent of quene size i

e ch 80 o i duLue size we know
shdboInere will on the average be AW t

YO

10 while crgr to. ——
up while our tagged customer waits on ¢

i=pp+1,...,P (3.26)

omer arrivals from the [th

A

Yy fre=y ) L

W, =W,+) gaw 1 ¥

imp i=pa

A
RIS

TR PR 4
WOIwWard argumernts we b

, . nave
guabions for our ynk

noewns 0«
newns w08

P
VV/n’i‘ ‘(u Ha i./v\/,
Ve ) PR

g < ih

in

rage waiting '

ho are present in the queue
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This set of cquations may be solved recursively with no difficulty since WS
have a triangular sct; that is, we first find W, and from this find W, ., and
[e

<0 on. We find it convenicnt to define

,
O'n:Z pi (330)
i=p
jS‘olviﬂg recursively, we obtain the solution
W, =1,2,...,P m (3.31)

W, TNl — ot

This last equation was one of Cobham’s principal contributions to this
problem, and its form is rather suggestive. In particular we see the effect
of those customers of equal or higher priority present in the queue when
our customer arrives as given by the denominator term 1—a, and also the
effect of customers of higher priority arriving during our customer’s
kqueueing time as given by the denominator term 1— .. Furthermqre
we notice that W, does not depend on customers from ]owgr priority
groups (that is, for i = 1,2,...,p—1) except for their contribution to the
fumerator Wo. Thus the solution given in Eq. (3.31) demonstrates that
some W, may be finite (for p=some critical value) while other Iovyer
priority groups may be experiencing unstable (unbounded) queueing
‘times.T Figure 3.3(a) demonstrates this stable—unstable behavior f(?r a
“system with P =5 groups. In this figure we have plotted the normAahzezd
waiting time W,/X since this is a useful dimensionlesg form. Also mn this
“figure we gain our first experience with the conservation law [Eq. (3.16}]

by observing the dashed line that represents the average Waiﬁing (ir{l.c for
the FCFS system, this dashed curve is z plot of Ba. (3.18). In Figure
'3.3(!)) the same curves are shown on an expanded scale, there one 1'11215'
observe the way in which the conservation law is functioning. In particu-
lar if one measures these curves, it will be scen that 2, {pul p) W, =
FWoi(1 —p); for poe it s dlear that this average blows up 1o infinity.
From the method described in Section 3.3 it is possible to find the
distribution of waiting time for each priority group. Let us deno!e.th.e
Laplace transform for the pth group’s waiting time in queue by W, (s).

PenEvRISET 377 E/‘E'“Q"P 1
[RSR R HIEAPE LV S B N A N

The solution is |

W, () = )

(3.32)

waiting  time so long as n~

¥ i eriences i
Y We  note that the pthogroup  experiences {;
}-{ o by L

(M
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7 and of course by our usual sotation z‘%,‘*“(s)‘corr‘cs;mnds to the ‘1‘,;\‘;»'1:1&1\

Jroe o qransform of the pdf for the ith group's service fmme. 1n these definitions

/ L. we have used the subscript 1 to denote the set of priority classes lrigher

//" than Out tagged antr and the subscript 1. to denote those lower, We

® 7 “ observe that the defiition in Fg. (3.37) is the same as the functional

4 equation given in (3.14}: also the form for W, ¥(s) is surprisingly similar to
that for the Pollaczek—Khinchin transform equation for waiting time in
the FOFS systent Specifically we note that in the case P=1 then
CyeEAEBAE =8 F(s) = G *(s) =0 and A, = A, and s0 W, ¥ (s) reduces
"o the P-K transform equation for the FCES system, as of course it must.

TR 4_10 ‘ 510 — i fprom Bq. (3.32) one may calculate the mean waiting time given in Ey.
() ' ' S (3.31) by differentiation.

Since the various priority groups receive different grades of service, and
since they may each have different distributions of service time, then in a
'feal sense we are discriminating on the basis of (distribution of) service
“'time; therefore, whereas the conservation law certainly holds, the distribu-
“tion for number in system will differ from that of the FCFS system. Lei us
1 fact attempt to discriminate completely on the basis of exactly known
service times. We may accomplish this as follows with the HOL model
defined above. In particular let us create a priority queueing discipline in
which highest priority is given to that job with the shortest service time
_(that is, an SJF system). This was considered in [PHIP 56] in which a
continuum of priority classes was defined such that the class index p was
“defined to be any strictly decreasing function of the service time %. Thus
“we have a model in which an entering customer whose service time is
known to be exactly x sec joins the queue pehind all other customers with
service times less than {or equal to} x and in front of all customers in the
queue with service times greater than x {noie that in the case where the
pdf of overall service time has impulses, then any ties are broken by the
FCFS rule). This is an M/G/1 queueing system in which we assume that

L
/o /T

0 0.2 0.4 06 o8
(k)

Tieure 3 . .
gure 3.3 HOL with no preemption: P=5 A =A/5 ¥ =%
REIAT VAR P P

o

where

»

Ay ‘tl;‘,.’\‘ (3.33) customer service times are chosen from B(x) prior to their arrival and
. therefore they may be ordered in the gueue mmmediately upon entry as

A=A described above. Customers whose service times fall in the interval
= (3.34) Xx<f%=x+dx are all grouped into the same priority group, and the

service time density associated with this group is merely a unit impulse at
x sec of service; of course the fraction of customers who fall in this group
1s merely b(x) dx, and this will be an infinitesimal quantity unless B(x)

has a discontinuity at x. Such is the nature of our continuum of priority

BH*(S) = v Z .A/,\v',. Bi*(S)

Y
B"*(S):i; /—\TBL*(S')

(3.36) groups. Let us now calculate the average waiting time Wi(x) for a
Gu*(s)= Bi*(s + A — MG #( ' customer whose service time lies in the interval (x, x +dx). Recall that the
nbrls) (3.37) priority index p is a strictly decreasing function of service time X,
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Therefore i the Hmit Eq. (3.30) becomes

P X
2 o f p(y) dy
i v

where p(x) =A(x)x and Alx) = Ab(x); this is the correct expression fop

since the average service time for such customers is exactly x sec and the
average arrival rate of such customers is A dB(x)/dx. Therefore Eq. 3.3y
takes on the following limiting value for Wi(x)

Wo

Wi)seo

[ e[ e ay ] = em

and we note that the denominator reduces to [T-x 3 yb{(y) dyT when '

B(x) is continuous at x. Here, as in the discrete case, our solution applieg

only for those “priority” groups that enjoy finite average waiting timeg,

Thus Eq. (3.38) gives the average wait in an SJF queueing discipline for 5
customer whose service time s x. Note for a customer with a very long
service time that lim,_... W)= Wo/(1-p), whereas for extremely short
customers, we have lim, ., W (x) =W,

Let us now consider an HOL system with g preemptive queueing
discipline. For this case we assume that the preemption is of the preemp-
tive resume type. The approach here js much like that described in
Section 3.2 and proceeds as follows. Recalling that T, is the average of
the total time spent in system by our tagged customer from group p, we
recognize that his average delay congists of three components. The first is
his average service time %, Second, there is the delay due to the service
{(work) required by those customers of cqual or higher priority whom he
finds in the Systeny; by our conservaiion vesults, we see that our tagged
finds an average amount of work in the system cqual to

Customey
(Zi» hixf2)(1 - %), wWhich must be done before he gets served [the mean
work backlog is equal to the mean wait in M/3/1

ferm as equal to the expression W /(1 -

and o we recognive this
it fed only by groups
e’ to our tagged
. Third, he wili be delayed by any customers who enter the

LeAl L, P the other 2roups are comnieteh
L H ¥ -

custaome

system before he leaves and whe are members of strictly higher priority

S UOn arrrvaly rerm aroup |

groune: the g VErage n st be AT,

cach ¢

which delays our

fdy

A Ty
PRy,
B Y
(l,, oot
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“he solution for T, is therefore

,.
Sl =)+ X AR

i=p

ip = (1 _ (Tp)(l —_ (fw.])

| l { now 11 B ¢ P Wl(S SO D
S g 0 p
e se an intere ting optimization H)l)l( 1 10s¢ solution 1s
us no

iening external priorities to customers. We conside.r tl_xe }}0[}1[)2?@21;)1};\;6:
e Let us assume that there is a system cost (1atc') 0}1 » do '
case e Jil u1; delay suffered by each customer from priority group p;
o e?tfhnseclcg;r tﬁat tilc average cost per second to the system, which we
t is then cle

enote by C, must be

' y \ -t 5 1 the
; he c N iS merel the a erage number Of 'Lype p customers in
W P

( ss of the
tem. Of course from Little’s result we know that regar(;ile;ss :have
stem. se s ki t regardl ’

Z%eueing discipline it must be that N, = A, T, = A,[W, + %, ] an w

) W 3.40
C=7 pCot 2 CAW, (3.40)
p=1 p=1
: i servi ueing discip-
e desire to find that nonpreemptive (wor.k~conservmtg) q;xc o ng M/G%
e which minimizes C. We will solve this problem for gf . ey
n res C. 28 "
system with P priority groups, an avera‘g% irriv(ill :;1: type_ppcustom-
¢ 1 a service time distribution
: 'S per $ect and a service tim
customers per second, : ribution Jpe-p Basom
ers given by B,(x). Let us rewrite Eqg. (3.40) to bring the co
1 by B,(x).
; - £..3% . .
: i-hand side as follows:
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- }: ooy == 2.(: (Gl %) e W)
) . et
P
’ ide the > 1 inimize b
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i i f queuet hiscipline. Let f,= (/% (a g
rlate choice of gqueueng discy . ; Biven
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functione, ane of which itself has a constant ares

)

Subscripts 5o 1

et SO T Wy 18
W osee ihat the ST y



126 PRIORIUY QUETIING
the terms f, lunder the constraint in Eg. (34D s o assign as fitle
mass” as possible 1 g to matel the largest rorm fr. Having done this we
will then assign as little of the remanrung mass in ge 1 against the next
largest term fo 1, and so on. Now from its definition (g, =peWe) we see
that since pp s a given coustant then we will minimize g, by minimizing
We. The noupreemptive work-conserving queucing  discipline that
minimizes W, s clearty HOL with the highest priority group correspongd-
ing to P (as usual). Having accomplished this, W, may next be

‘ ifi in fac x) need
Specxhcd [in fact, B,{(x) nc

minimized by making this the sccond highest priority group in an HOY,
system, and so on. Thus we see that the solution to our optimization
problem is that, of all the possible nonpreemptive work -conserving queuein
disciplines, the HOI, discipline with the ordering given in Eq. (3.42)% is thes
which minimizes the average cost given in Eq. (3.40)! This proof de-
pended upon the conservation law but also could have been established
by the more usual mtcrchange argument [COX 61] (in which only
stationary disciplines are considered-—a sufficient class as recently shown
[LIPP 75]). It is truly amazing that such a result is obtainable and sq
simply.

3.7. TIME-DEPENDENT PRIORITIES

The reason for imposing a priority structure on the customer arrivals is
to provide preferential treatment to the “higher priority” groups at the
expense of the “lower priority” groups. We have shown above in the case of
linear cost rates that the HOL priority system is optimum in that it
minimizes the average (linear) cost, However, this linear cost function is
not always suitable and in fact the appropriate cost function is often’
unknown. In spite of this, the practical world is abundant with examples
of priority queveing systems for which decisions have been made regard-
g the relative desired performance among classes (and which therefore
imply some torm of cost function, perhaps unknown to the users or the
system). For example, most military systems use an HOL discipline with
preemption permissible by the highest priority groups and usuaily with
four or five groups in all. Another examiple is in the servicing of
automobilés at the repair station in which the mechanic selects from
among those automobiles waiting for service that one with perhaps the
shortest (or perhaps the most expensive) service requirement. Often,
therefore, rather than specifying the cost function, one is willing to specify
the relative waiting times among the various priority groups. For example,
a system designer may be required to synthesize a priority queueing

* Taking %, = Yy, we have f, = 4,C, and so this optimum ordering is referred to as “the wC
rule.”
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: , 1071 e q't>qt)]. Whenever a tie for the
customer with priority g(t) where q't>q(i)] Whenevar n e Tor
" hig iority occurs, the tie is broken by an FCUS rule. We not :
. highest priority accurs, th ' N T A o
higher priority cusiomers gain priority af 4 ]

L s

iority customers. ‘ ‘ , R
pr;‘nty 3.4 shows an example of the manner in which this priority
igure 3.4 shows

/

s
e

g, (t) = (¢ 'T')D,,'/>/ .
/

- /[w”) = (- Ty

7, (t)

: ppppppppp =

T T Iy

3 1 for the delay-depende rior-
Fi 3.4 Interaction between priority functions for the delay-dependent p
tigure 3.

ity system.
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structure allows interaction b
k ‘ Cltwee > Priori ; : :
tomers. Specifically, ai time + . cent the priority functions for twa o "
and Attaing i Ne 1A customer from PHIOrity group p ipps o
i 1‘ ; IS PUIOTity at a rate equal to b, At time 7" a ('jif;ele pt[ Atives,
enters a higher prior; ( N s
pet lmm 1 higher pr 0Ty group p’: that is P'>p. Wh ”t] ¢ s her
acnHty becomes fr : St ’ ‘J o en © servi
ey inst,ljl:,b free, it ne Xt chooses that cusiomer in the queuelL h
wiTl bé Ch()s(c; ‘-mt'OAUS. briority. Thus, in our example, the firgt cwlth ‘
hecone f,é ltn preference to the second customer if the ser\vi U?Tmner, ‘
e - X ce facil;
fest e i fc;my tlme} between 1 and lo (in spite of the fact th;ltui;:
: S “HIsIrom a “lower” IO slace)- e
the second custom i priority class); but. for any time after
We o }1 er will be chosen m preference to the first o
e study e el . : : > first.
he meth()j g; 1: sygem for the case of exponential service times W
Quantitics anC(;SUAéjm %\./2 z;nd are faced immediately with caIcuIc;ltini il;e
i v We begin with the calcylagi Vi ;e
reader to Figyr VI 2o ation of M, and refer k
smaller (or eé u;)&f- Clearly, M, =0for i< P since no latelr arrivaleI t'he :
consider gt q $l0pe can ever “catch up” 1o the tagged cust N
. F the ari ! 1 customer.
Since w1 ;va] ofap t}{p@ customer, the tagged customer at ti o
rionits ;;t thc‘U(‘xpetctcfizd.waltmg time, the expected value of i’ts‘ att?e %
)  expected time it is accer i i ‘ ane
Figare 15 ( I8 accepted for service is bW, ass i
3.5 In | - G 4 show
Customers (for i(;o;)m? fm My, we must calculate how p;ﬂany it;};: :
: : b - arrive, on ﬂ](' average. af I y
PTiority of at leas o ime w6 after time 0 and re
e i);uqfdt least b, W, before tirme W, It jg obvious from the fEIi e
- ustomers . P L . i by 11 -
opes mers that arrive in the time mterval (0, Vi) wil] s g it
10ns. Let ug calculate the value of Vv, CIearIy) 7 Ly these
e of V. C
, :

bW, = b(W, - v,

qp1) Slope ip

1

5|oly

i >
Figurc 3.6  Diagram of priority, g,(1), for obtaining N,.

7 [N

to,.

M, = /\,»W,,[ 1 *%‘7] foralli>p (3.43)

We now prove that N, = AW, (b/b,) for i=p. Consider again that a
‘type-p customer, the tagged customer, arrives at time == 0 and spends a
otal time i, in the queue. His attained priority at the time of his
acceptance into the service facility will be by, as shown in Figure 3.6.
Upen his arrival, the tagged customer finds »; type-i customers already in
‘the queve. Let us consider one such type-i customer, as shown in the
gure, which arrived at t = —{,. In looking for N, we must calculate how
‘many type-i customers arrive before t =0, are still in the queue at t =(,
and obtain service before the tagged customer does. 1t is obvious from the
figure that a type-i customer that arrives at time —t, {f; > 0) and that waits
in the queue a time w = wi{t) such that f, <w;(t,) =<1, +t, will satisfy these
conditions. Gbviously, wi{t)} must not exceed ¢ +1, since otherwise the
swer priority than the tagged customer, and
e conditions stipulated above. Let us solve for

and so

Vi=w, 1]
‘ Di §

I=type customer wi
will therefore fail to mice

Therefore, with ap ;
Ore, with an input rage A fOr the fyne- ! cicrar. A
TUEeTD customers, we find that
23 M imaypiy
M, = 5V, n | "
Buta = bl + 1)
A “and so
‘, b
| b !.’[
! ) » i !7,, - Z/y 4
| e : :
i < ”
- Slope &, /'/ £ ’ h
< J ,/ ;‘f‘ I (‘{,Aé‘r/\
u\"] ~ s
! '/:f 4
’ r , ( : I ¢ SCCUREOIIETY
- A Sope b ¥ Ny, 1 e QUSROS
’ ) | I e Y et
{/”/’ N4 jl P OB ServIce DOIoIe e
&
e S i
0 v, ) "»WMM ~~~~~~~~~ I
(3.4-

b

G125 gy
ieure 3, TApTL o e .
BT ol priority, g,(1), for chtuining 1
-
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where Acdr s the exoected namber of
FCIS

] ) ) P cusiomers that arry
during the time incerval (o~ de ) and where ; CORTIveq
’ SR WG o “"(” t”;-/“?,» - [’f”[} ” 12 p-

! i

s the probability that o customer who artived in that interval s i
lcast 1 and at mosi {b/(b, - b)) i : Pedb HHETVED spendy
RE dar e SELO (B = b e see in the queue . Faunat 5 t
written a8 o ! mfae quese. Hquation (3.43) Can he
8 L
No=af [1op Bl [ b, 1) g
ip /,J, Plwr=n)fde-Ng (L - p{ N p__r]l ] i o
{ o i L L ,3){‘ o }}, | | ¢
p . 4
fx(‘ [Pl = o [, b
.jn s ) ' (“ /\‘l f ) { I Plw, = \’)] dy
P/ ¢ .
where wo have made the of : i '
Ve 1 Nade Mo enanee of vaviy R S 0 B
g of vaciable y =[b (b, - b))t Now., Since 0 0.2 0.4 0.6 0.8 1.0 P
Elw, ]~ ( ‘ S0 pigure 37 W/X for the time-dependent priority system with no preemption.
A= [T=P(wi =x)) dx L pes A, T NS E e R

g3
YW L DO - e At e s
U5 We a non-negalive ratud

¢ .
. oM vartablie), and since i - i

- : » S1nce in oun atic =

FElw], we obtain notation W=

and when this substitution is made we have

_ - ; i pl
Ny, = AW — A,[ | ;,,121} W [Wo/(1—p))= 2 pWil1=(b/b,)]
, _ b, W, = — —— —  p=1,2,...,P
and therefore - Z ‘pi[l ~(by/b)]
Pwpt
b, . = (3.48
Ny = AW, 5 forall i=p (3.46) ( :
? ’ which is the main result for this nonpreemptive time-dependent discip-

line. It is interesting to note the extremely simple dependence that W,
has on the parameters b;, namely these parameters only appear as ratios
[KLEY 64a, bl

The typical behavior for this time-dependent queucing discipline i
shown in Figure 3.7. The dashed curve shown is that for the FCES system
and once again shows the effect of the conservation law on priority

Further it is clear fr 'q. (3.26 Nip =
urthe more, it is clear from Eq. (3.26) that Nip, = LW, for i = p since our
e S M =) o - < 7
/Viglg 4 customer can never catch up with these higher priority customers
alt of whom are present upon hig arrival) )

Having derived expressions v

ks eu expressiens for N, and M, we :

, i and M, we may now substit
these quantities into Fg. (3 11) o bt for

and o

btain
queueing disciplines.

Thus we have analyzed a queueing discipline that provides a free set of
‘parameters by/b,.. that may be used to mect the specificd system perfor-
mance requirements given as W,/W, . forp=1,2, .. P—1 Wesee that
only P—1 performance ratios may be specitied and that we have exactly
this many degrees of freedom for meeting that specification; the Pth
condition is forced upon us as a scaling factor {(that is, the conservation
law) for all the waiting times and of course is a function of the utilization
of the system (it is also clear that We for this class of systems can never lie
below the corresponding curve for the HOL system, because of the
ultimate preference given to the highest priority group in HOL).

A natural extension to this discipline is one in which a customer’s
priority increases in proportion to some arbitrary power of his elapsed

W+ oo

VW e
I S, p = l: _/‘) . . i’) (147)

oW+ 2 o Wilb/b,)
= 2 pli=(b/by)]

This set of £ line: Tuati i
PR near equations o Yo te crrfRo
quations in the W,’s is sufficient to solve our

problem. However, it is possible to create a much simpler triangular set of

(;q 1?;035, fI(‘)l.ﬂ these by making use of the conservation law given in Eq.
(3.16). peuhcl'aily we may rewrite the first sum in the num\erator from -
EHep. (3.47) as follows: / ‘

" )
2 oW, = L'*Wp’ 'L oW,
- [
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ih order delay-dependent priority system without preemption. and 0=
rth- i 3

() '
T g ( i) h, \J/
[ 27 Oy '/

<l

¥ 0 = ,,-~-~- p=1.2....,P
¢ ' ' ) lp‘[l =(by/D:}'""]
f This result we see is in basically the same fom? as r=1. Ft.xirlt'lzcrxg)orre‘goz
0 7 T ""”“““,]o““**“ e result in Eq. (3.50) we see that no greater generality b 1S

afforded with arbitrary r since they arc all equivalent to our carlier result

01‘ r = [ ! . 3 . e At
However, there Is insight to be gained from this generalization. In
Figure 3.9 we show qy(1) for a customer arriving at time 7, with r as a

parameter. We see that

Figure 3.8 Coupling of different priority units.

time, rather than the first power as above [KLE} 67a] We now address . ‘
ourselves to this “generalization.” Thus we define, for any non-negative
number r, an rth-order time-dependent priority discipline as one that

calculates the priority 45 (1) at time 1 associated with a customer arriving
at time 7 as follows: '

tim g8'(t) = by 1(1-7) (3.52)

where u«(t—7) is the unit step function occurring at time 7. Thus for
=(, an entering customer from group p is as§ig11ed a fixed v‘a!ue OIT
priority equal to b,. This is the HOL system .studu.ad abovg Moreover, as
7> 00, qi/'() becomes a siep function of infinite height at time = -+ ],: Thl‘lsj
customers that have been in the system for more than 1 sec have infinite
priority and those that have been in the system foxf less fhan 1 sec ’ha.ve
zero priority. Remembering that an FCFS criterion is used to bmak a ’[)1(3,‘
- the limit as r approaches infinity is seen to be a strict FCFS system. These

4y = (1),

Further define W{ as the expected value of the time spent in the queue
of an rth-order system for a unit from group p.

The coupling between customers of different priority classes is illug-
trated m Figure 3.8. Ag for r = 1, we see that it is possible for customers
to change their relative positions in the gueue. It should be noted that -
there can be at most only one interchange herween any two :

- customers and
118 this propertv which

s T e 2hs
;.?Tip.;fz(,:«. the

analysis.
dependent priority systemis, one of
order v with a set of parameters {b,) and the other of order r' with -
parameter set {bi). In Fxercise 314, we prove that if we choose

A - . . : :
Consider two peneralized e

g’i_, p!" ’ 1 . I/ ])i')\ (1

i\ % H TR H [ r 5 ]J i (j;.-4(/)
N i NDpgy
then
V2760 ey &
Ve R . {5.50) i
OTACT Syt pay he ool oy JuY ;
waiting 1 ) by an roth-ordes system (for any r, > 0) through a suitahl —
o L ) ‘ ; s & L 1
chunge of parameters ag given by Hq {(3.49) The case o oo | ' "
alrcady bee T

0, order 1o obtain WY we g peal 10
hoce gt g o N P B . )
these results and obtain {sce Dixey 3.14) the main result: for an
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two limiting cases can also be obiained by faking e it of W

follows. from Fq. (350, for bo<lh o (p= 1,20 . 7 1),
pod
W/l 'f)) ~ }_‘ oW,
lim \/V,‘," = lim \/V:,” IR e Aﬁn«’;__',.v.l., e
o0 o
Wifbyy )70 5
L= 2 o
e
Solving this last set of recursive equations yields
W,
M ir) 0
!;":{} Ws o 0 (3.53)

which is the same result obtained for HOL. We also note that
limy, . (b,/b, )" = | and so
lim W = W (3.54)
ey 1 o]
which is the result for FCFS.

We now consider {b,} to be fixed and display the dependence of W on
r. As discussed above, as r — 0 we obtain the HOL system and as r > o
we obtain the FCFS system. For r=1 we have the first-order time-
dependent system. In Figure 3.10 we illustrate the general behavior of the
expected wait on queue as we vary our priority discipline over the class of
rth-order systems for 0=r. We show the case with P =35, b,/b,., =%,
Po=pl5 %=X, for p=1,2,...,5, p=0.95, and Wo=1. The dashed line
in this figure demonstrates the conservation law for this particular case.
The wide dispersion of WY among the priority groups shown in Figure
3.10 is due to the large value of p=0.95 which causes considerable
interaction among contlicting arrivals. For smaller values of p, the disper-
sion is not nearly as great. However, as we have shown, the relative
waiting times can be adjusted by varying r for a given {b,}; moreover for
a given r, variation of the {t,} accomplishes the same adjustment of
relative waiting times.

It is interesting to note that the class of rth-order delay-dependent
priority systems covers the spectrum from that queueing discipline which
separates priority groups in the greatest possible extent (that is, HOL) to ..
the discipline that does not separate them at all {that is, FCFS).

Comparing the performance of the HOL system in Figure 3.3 with the
performance of the time-dependent system in Figure 3.7 we observe that
a certain generality seems to be lacking in the latter curves; namely all
priority groups appear to saturate at the same point p = 1. This lack of
generality is only an illusion. Indeed stable performance for higher
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100 oot
by s‘....____\»‘\
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Copigure 3.10 WY versus r(by/byyi = 0.5, p = 0.95).

priority groups while lower groups are experiencing infinite average waits

: i i i 3 ] iscipline crmitting certain
.may be realized with the time-dependent discipline by permiiting cert

of the ratios by/b,.. to approach zero; this effectively separates: the
(p+ 1)st group (and all higher) from the pth group (and all lower) in En
HOTL fashion [KLEIl 66]. So for example in Figure 3.11 we show the

{ F thi c iz ime-dependent priority queueing
performance of this more generalized time depend ; ’Sy \q : -&/'150
iscipline ich we have 5 > parameters P =25, A, = A/2
discipline for which we have ch@a& t}.mﬁp mmy s P /"/1"'};3“’ /=2

%, =% and have forced the creation of five HOL groups; within
P afid . . b internct in 4 fashion simiiar
CHOL group are five prierity groups that wnteract m a tashion sumil

[Ee]

in Tioure 3.7
that shown in Figure 3.7. o o
Other “‘dynamic™ priority queueing disciplines have been considered

; covrod to references [JTACK 60, 61, 67271,
and the reader is referred to references [JACK 60, 61 !

3.8, OPTIMUM BRIBING FOR QUEUE POSITION

For those queucing disciplines so far s_tud.ied .(and for moit of tl]i)se
described in the litcrature) the relative prionty given to arJ caf‘,a)}n,:\‘,t 1\
completely out of his individual control. The customer in effect has no
choice as to which priority group he must join. )

Tn this section we shift the emphasis somewhat, z\qd alk?w ee;ch evnteu‘ng
customer to “buy’” his rclative priority by means o% a bribe [~Klfb1 670;11
The size of the bribe will be determined, in general, trom‘ certain economic
factors inherent in the population of customers; in particular, the greater
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Figure 3.11 W,/ for the mixed HOL

: and time-de i
preemption. pendent system with no

the wealth of 4 riscteamme oo o e ftals
the wealth of @ customer and the greater his dislike of wating on queue
the greater will be his bribe, ) L
We consider an M/G/1 system with Poisson arrivals at a mean rate of A
customers per second. and an arbitrary PIYR for service time B(x) with a
¥ oY service time ) witht &
cuctomer’s beihe ol
; custemer’s bribe, given by Y, be 2
- v > 3 e 5 3 o ’ "
random variable with an arbitrary distribution function B(y) = PlY = ]
LS VP N N Y . ) o - o
We assime wtat the arrivaj time, the se ) ’ :
independent random variables for

the value

WMEdn SCrvice time of ¥ spe §ear o

rvice time, and the bribe are all
cach customer and are independent of

Cubiamic

Foallog

The sysiem operates as foi

L5 i
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aws: woarrival to the sy fforg®
_ The system operat wan A new artival to the system offers® o
phRTHbRAive BOBe Y 10 The Cgucue orps

ganizer.” This customer js then

Mgy .
" This bribe may he ught of i

. ty he thoug a8 : fore 1
st n ay . »mn;))n of as given before the customer sces the length of ¢
Al tase ihe disinbution B(x) reflects his micasure of wealtt i
thercfore independent of queue length,

e gueuce [in
hoand impaiience] and is

8
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jaced in position on the queue so that all those customers whose bribes
Hlace

y'=zY are in fromt of him and all these with bribes Y”<2 Y arc behind

©pim. Newly entering customers may therefore be placed.in front of,.m'
. pehind this customer. depending upon their bribe. Each time the service
~facility completes work on some customer (who then leaves the system), .1t
k‘then accepts into service the customer at the front of the queue. Once in

ervice, a customer cannot be cjected until he is completely serviced (that

s, nonpreemptive™). Whenever customers give identical bribes, they are

erviced in a first-come-first-serve order.
“We define, for & >0, the left and right Jimits of B(y) as

Bly ) =limpB(y—e)
By =limB(y+e)

Let W(y)£average waiting time (in queue) for a customer whose bribe
<y =y. For such a customer, (say, the tagged customer), we now calculate
W(y) using the method as described in Section 3.2. The tagged customer

“must, on the average, wait a time W, before the customer who is in
sservice upon his arrival is finished. In addition, he must wait until service
“is given to all those customers still in queue who arrived before he did
“and whose bribes equaled or exceeded his. The expected number of such
- customers whose bribes lie in the region (u, u + du) is, by Little’s result,

AMu)W(u) du

where

we who enter the system while he is on the gueuc

bribes exceed his The expected number whose bribes He i ihe biderval

(4, 1+ di) and wha srrive during his average wait W(y) 1s
AWy du

b I # 4 o
A toy the

s

[ R 20 S0

three contributions

" A preemptive case s studied in [ KEETD 67h)
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average wall, we get®
= o

SAGOW () du + i YA

v N

i {
Wiy) = W+ J

W, *}-J pW(u) dB (1))

Wiy) =

[ } pdg ()
i

e )
wnere p = A% Since () =1, we have

W) s
O e PR

W+ Dj{. Wi dBlu)
(3.55)

In Exercise 3.15 we ask the reader

integral is simply

to show that the solution to thi

W(y) = - W, B
Li=p+pBy Ot —p+pBly )]

We a‘lso note that at those bribes of value y where 8(y) is
solution becomes v

(3.56)

‘/V(}/)‘: JEE— S —
[t=p+pB(y)]

IF is m?ergstiqg to note once again that the only way in which the service
time distribution B(x) enters the solution is through its first and second

moments; this is no surprise to us for M/G/T systems.
Note, in general, that we obtain finite average waits for all those

customers offering bribes greater than Yoer WHETC
- = 4RI Yo B e

el WA
iy H

and where £ rat

20@ unlike that of the HOL system for pz= 1 We note in the limit as the

Wrz{ljc, approaches infinity that the average waiting time approaches Wo.
| %t us clonsxdc:r some special cases now. First in the case of a constant

bribe yo (the same for aii customers) as given by

{ie)

o ¥
Li(y)z{; oo
" Yo

yf

ERe
*The lower limits of i i
lower limits of v and v come about since all ties are broken on a first-come-first:

serve basis. (Also, W, is merely /\)?/2 as usual.)

continuous thek ‘

(3.57)

\ . (3.58)

OPTIMUM BIIRING FOROOUNUE POSTTION

o
A

L e have
we
, ‘,V,‘f,/“ (3.59)

-

W{va) = i

‘Since all bribes are the same (resuliing i no etiecdve vribe a all), Ly

T3 59) should correspond to the well-known result for an FCFS M/G/L
- q-ucuc. which it does. Second, for the case where B(y) s continuous at the
'f:oyigin, giving B{0) =0, we see that
‘ W e
W(0) =3 3.60
O =y (360

This behavior ai zero bribe should describe the waiting time for the lower
priority group of a P =2 HOL system where the arrival rate of this lower
priority group is negligible compared to the total arrival rate. indeed, as
can be scen from Eq. (3.31) with P =2 and p < ps, the cquations above
are cousistent. We also observed this behavior following Eq. (3.38) for
lime—- W{(x). Last, when only a finite {countable) set of bribes are allowed
(say at the values y,), then we have a discrete distribution which yields

4 W ®
Lo %, 4800 || 1-02 8800

Prepeit

(3.61)

W(y,) =
[

where AB(v) 2 B(y")—B(y"). This equation corresponds exactly to the

result for HOL.
As soon as we introduce the notion of a bribe, we must then consider

other cost factors as well. In particular, let us define a random impatience
) that measures how many dollars™ it costs a customer for

(=

factor &

each second that be spends in the queus. We now introduce a cost
‘ n (o) defined as
Cla)= yu+aWiya) (3.62}

where, again, :
a = value taken on by a customer’s iinpatience factor &
(dollar/sec),
W(y.)=average waiting time (in queue) for a customer whose
bribe is V..
Thus C{e) is the sum of the customer’s bribe (in dollars) and his cost of
Waiting (in dollars). We assume that customers have {sclf-) assigned
values of @ before they enter the system, and that the population of
customers, as a whole, produces a probability distribution Pl{a) on the

This cost may be measured in terms of customer inconvenience or impatience, if you will.
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random variable &, that 5, Pla)= Pl = o
are the same as those considered carlier where now the bribe is
(deterministic) function of the random wvariuble &, We have thus shifteq -
emphasis from the situation in which a cusiomer offers a random bribe ¢
& situation where the customer’s bribe is functionally related to hig
(random) impatience factor Q.

We pose the following optimization probl
which minimizes the expected cost C, that s,

I The queuvcing models he

em: Find that function Vi

minimize
Ya

j c4 L\‘C(a‘ Y dP(« )J

subject to an average bribe constraint equ

(3.63
al to B, that is,
B- [; Yo dP(a) (3.64)
We must therefore choose Y« O minimize

C= }f )'}yu. + @ W(y.)] dP(a) (3.65)

Because of the average bribe constraint, this is equivalent to i

tinimizing
P
C—-B= | aW(y.) dP(a)
o
Define
dP(a) ) ‘
Pl =p = (s.66)

We may interpret the quantity p(a) de as the fraction of time that the

SeTVIng customers whose impatience factor les in the
(3.66) we th

en fingd that for Q- 0.

. 1 o
CeB = [ ap()W(y,) da (3.67)
{}J(; "

weivation law may be writte

&
o
jav)
e

i : t I )
Lo {OW ) da= L, (3.68)
[T \Yo ) 1

@0 L] *‘{)

575 snvolves finding that

ORaE miinimam

unction vy, su¢

. me ment as that for proving HOL
for dinear costs (in which W malched an increasing scaucnce ap:

i asing sequence) we sec that a '
- creasing seql : - eases witl @, that is.
oo “detdition on W{y.)is that it decreases with a. the

ol gon L

SO)‘HE OF

k A £ + SIC (u)=1 and
o where (u) &1 - -pB(u). Now since B\u). ‘ . N e
\ A (ﬁi) A{ \1)4)\ {‘l %‘i}i%o <'(4n-)"c» B(u) is a distribution function then
5 y ARy U S SING

. 141
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Y - e he 3
a necessary and achievable (see below)

W) g

(3.69)
da

o e 3 P{ee)= Here the
Il «€ S [where the set S has the property [s dP(e) 't?g.n »

por das‘ing function is « itself. Condition (3.69) may be rewritten as

increas :

(3.70)

from Eq. {3.56) we have (letting y. =)

Ay OIABG ) dy]+ Ay NdBG/dy]
dvg}@ =W [AGHAG T

p<<l then

= [) < 9 its 2: oo hdS a
dB( )/du >0 UliS inl ‘U’(.«S ha or a 1 Va] S O s.a ir nt W(}’ )

u 3 B $ t. t t ¥ [ ue: 1 t Pumen

nonp()ﬁiti\/ﬁ‘. dCh“iVa .i\’C, that is

. dB(y).
<0 at those y for which izi-—y‘ >0
aW(y.)

' hich B0
4y, }Lﬁ 0 at those y for which T 0

(3.71)

I]() b ] 3.7 (5] < to S Y 1ti0
V { 3 1), the tha OUr necessat 7C0ﬂd n
m }',QS <‘ o i) al d (. - j/, (_h(./n- Wi haV

- O‘D‘ ))(x b\/ cComes

fi—;‘]——”:‘» 0 for g S

GO

Th 1 i X ' family of functions (for
at thl is achie ! bvicus for a la.rge Tarmly :

at ir ast 1s achievable 18 0 o ’

nat s fast 1 ) this f’amé!y however, we may use cmiy those
L Ly,

-

exampze

.

i H
Functi arly cxist Hor example,
2.64); such functions clearly cust {for ¢ T

A

<o < s in which Plov) s constant. Clearty v,
}\‘\J’»‘"K -:"wf“- 5 QaTTIE Y

b interval without affecting £ !hf same
{

4 : ity ERiir Craicdn
Prievy is contmuous. jut such

A

i DL o TOF W
Y poi

set § Howewver., for the cets® 8§, (defined by o
SEL 5. Drowovar, FOF e €

3, i which Plag s asst

R A ey o
3 .659) holds and alse tha

.
Iy v s

(defined by e o

require that by,

Piay e SR b
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¢aed and heS.. This last is true for the same reasons jo. {in 3-8 OPTIMUN BRIBING FOR OUELE PORTION
d501018 j2ag H.g up,

8 E‘,q (‘) ()9) f1am b4 at i < { - 1 ¢
) < la. A Ll .t 1at i (‘1 1 ¥ ll‘ UMize . ”d
O R {e) mmize O }).. Wemust {Sduc al ¢ aver S Cost gves
€., V

o=t AW, ‘-1 (3.76)

o Iz P

Wi{v.) as «a increases.

T ) i o - <y fen . s M .
Thc(ﬁ;:fﬂ:@flstratt that .Eq. (3.72) is also sufficient we consider g, (3.85
he d\ exén merely gives B, which is independent of Y, and the‘ qe; . )
absom;p;gbs gnly upon the relative size of the bribes and not llp;(>t1cond
olute ré \‘:"ltbelf. Ho\fve.ver, Eq. (3.72) gives a complete descriptionthe
e tank ofr ering o; the bribes. Consequently the necessary and suffic o
M 10Ty« to be an optimum bribigg § ion is me “
» ing fu s mer i i
Eue. (60 oo & unction is merely that it satisfy
Th . L
o (gséi;h; solu.tloH to the minimization problem set forth in Hags. (3.63)
Havm(’. Con?;rstpct; Yo ;0 be a strictly increasing function of o fo-r aés)
g amed ooly the mean bribe, we o [
ned o . » We get only a condiri %
:r\;he; ttf;}an an explicit functional form; indeed? the scylution is ir?;e o
Thusofor :hexact form ()f Yo, 88 long ag it js strictly increasing wftznd"
i € purposes of calculation and example we may choose .
simple) relation, such as the foilawing linear one: o

here, of course, A is the average impatience factor and B = |/o is the
verage bribe.

The optimization described above is a global optimization and seeks
ribing functions that minimize the total average cost. Recently, in
ALA 72}, a similar (noupreemptive) bribing system was studied in
hich conditions were found for which a customer would offer a bribe so
s to minimize his own expected cost (disregarding the global minimum).
ost of the considerations in [BALA 72] center around the discussion of
able bribing policies; roughly speaking, a bribing policy is stable if when
I customers follow this policy then it does not pay for any individual
stomer to deviate from it. Upon their arrival and prior to making their
ribe, customers are informed of the bribes given by all other customers
:the system (and therefore, the queue size is also given). The first result
btained is that in the system G/G/1 for p <1, with finite second moment
“service time and with C(a) as given in Eq. (3.62) then a global optimal
licy is one in which all customers should give zero bribe; however, this
policy is clearly unstable since an infinitesimal bribe puts a customer at
¢ head of the queue. For the M/M/1 queue the bribing policy b, (bribe
e when the queue size is k) is stable if and only if

Yo = Ko
Applying the mean bribe constraint, we get

B =Kf0wa dP(a)

equations

(I—p) max Ab = ax SML‘(X—_"Q min Ab (3:77)

Th{is then is an optimaj bribing function.
5o . 2 .
rder to obtain some nsight into the behavior of the optimum:

bribi . .
Cgl::g procedure an'd the cost function, we offer the following example
€r a system with an exponentially distributed bribe, namely e

here Ab. = b —b. .. We are here implying that cach customer has the
same impatience factor & =«. Furthermore, it can be shown for the
stem (G/M/1 that the bribing policy in which by = bye,, but which is
ictly increasing on the even integers (2k) is stable if and only if

By)=l-e=  5=p y=p (3.74)
1 aX 1 . PN
‘2‘ mkax Ab, = - o = I:E"T“—P—z mkm Aby (3.723)

We may immediately calculate the waiting time W(y) from Eq. (3.57) as

d p. is the probability that at least i new customers arrive between an
arrival instant and the completion of the service in progress. Considera-
ns for the M/G/1 system are considerably more complex. In [BALA
1 the preemptive resume case is also considered. See also [BALA 73].
n.[ADIR 72] locally optimal bribing policies are described for M/M/1
both with and without preemption) as well as optimal pricing policies for

Pa)=1— ¢ ®Akpa
he server.
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3.9, SERVICE-TIME-DEPENDENE DHRCIPLINES

We have seen earlier in Section 3.4 tha queueing discipline

s that do
not discriminate in any way on the basis of service

time musi all bave the
Same average waiting time. Beyond that we have seen some exampleg
(e.g., HOL) in which priority depends in some incidental way On servige
time. In this section we mention some results in which more explicit use is
made of a customer’s service time. This discussion is rather abbreviated in
this chapter but forms a point of departure for Chapter 4 when we
consider models for computer time-sharing in which great eflort is de.
voted to creating strong discrimination on the basis of required service,

One feels intuitively that giving preferential treatment to shorter jobs
tends to reduce the overall average waiting time as well as the average
number in a priority queucing system. In fact we have seen one example

of this result in Section 3.6 where Eq. (3.42) determined the correct

ordering of priorities in the optimum HOL system under linear costs; we
note that if all costs are identical {that is, C, = C, for p=1,2,..., P)then
this ordering is strictly on the basis of shortest average job. In fact in the
continuous case [see Eq. (3.38)] we found that the SJF discipline gave the

smallest possible average waiting time for nonpreemptive disciplines (i.e., -

apply the pC rule to this case).
There are 2 number of interesting disciplines based on customer service
time and we list some of these below along with those we have studied

(we use notation common in the applications and in the scheduling theory
literature [CONW 67D

. FOrs: frst-come-first-serve

I, LCFS: iast-come-first-serve

3. SPT: sing-time-first (same as SJF)
4. 5R¥ shortest-remaiming. processing-time-first

5. s:horiest-ex;*eaiedpmcessingtimc~ﬁrst

G. shoriest-ox sected-remaining-processi

aits amiong these va

fiom the study of gueuch

N

chthifig sysiems, we also consider the
arrivels ars permitted to enter (the ¢

o
D

se for ach

sing arc available at the start of the
I i

ey o servie

© e case of no arrivals, there

R

veomust consider which has recentiy

gerv

" under this discipline as follows:
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] g - if o | ; ey has a
The SIPT discipline operates as follows: if tiw é(h cus?u;l:jux has

S i i (x) and has already receiv :
distribution of processing time Bi(x) and y

Lo A be
ice. and if the permitted points in time when this ith customer may

i z - - e s o rale tcd
mpted are &, i then the priority g (x) of this job is calcula
TEC L& ity lizg oo oy

X

~~~~~~ = min { ———v—

gi(x) G

J"’U ~Bi(y)] dy

‘The customer whose function g:(x) is maximizeq is (\i@ﬁnf:d to 2?(:; gxel
argest priority; the above ratio is the ‘expe.cted time spenio'n CuSs
t he is allowed at most an amount f)f service equa}l to t‘.‘jt C? b defining
For some of these seven disciplines, we are intereste defiming
related disciplines in which cost en(tfiarst t_he plzt::ri}.hﬁzge:;e\vl?near con-
> ith linear cost functions (that is, costs ich ) ]
;i;?ggcva:ilting time). The new class of disgipliners we )w{xsh ft;)1 1:;{(:;()1;1(:
involves forming one of the measures men.txoned above ‘;asaie agsociate(*i
'SEPT) and dividing this measure for §ach job by the .c?‘s rSEPi‘/C) Wé
with that job (thus, for example, forming the new dlscg‘léleSFPT/c (.m.)te
will need this additional definition for the case of SPT/C, SE

that this is the wC rule), SRPT/C, and SIPT/C.

1€ LS. 5, WE
L et us now comment on son Of the kllOWIL Iesu]ts hl aﬂ cases

1oL yk cm (n creation Y de&ﬂ uction i WOIk~—
assume a Col scrvative s S ( O C a (6} )

i i Serve en jobs are
i specifically, no cost for preemption and no idle server when j

pr?xtf:)wg consider the case of no arrivals and costs ti:d' a?j., in;tjir \:gt:
average waiting time. In the case »0f cxact}i ?mm’m kef\/fc;{ 1; 1;3:\%51@”
known (see, for example, p. 264 [()O}‘(w‘?v 67} for c{}pifﬁjina{ Drne (;m.;)
of this result) that SPT/C is optimum (;c it m%mm»mﬁs;. the a ;i;g forthe
If oniy the distribution of scl'vice.ti.rné for each ‘,]Ob‘ is MOT}%N?;T’ o ;;
nonpreemptive case, SEPT/C minimizes thfe. g\/‘ﬁrage jfiﬁ!{:w ’m—w ;;my
“the ?reemptive case {(where the set of permissible preempnion pomts may

~be specified), then SIPT/C scheduling is optimum [SEVC 741

i int ing case of arrivals {i.c., queuemg
Let us now consider the more interesting case of arrivals {L.e.. 9 g

ling Tu estrict ourselves to
Systems). We seek the optimum scheduling rule (but restrict ourselv

cusiuate 4
Gl oovdiua o

i oot discinhiney onhyv-
the case of prionty discipiines only ¢ w iluete b
0rity | v on that ioby's parameters) for given types ol g
priority hased only on that job's i ! ) for given types o
s infrnunt variance of Gme w8y

Y
- v IAT w unry B
wrage [SCHR 747, u very ni

e

functions 1

3

14T, CONVEeX, CONnCave,

2y . Ea|
(*'T J, Dhaxiimu Jgog.
L

iven. e

ing disciplines is
ty, (1) exact service time

yatinn o~ cervice fime oply givern,

: H heoe optimal sch
Summary of several of these optimal sch

AT

Constders three possible miormation states, nan

o (4% no

N . B N .
Wmformation given; (23 i
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i“fu;‘mz\lmn regarding servivice times given, Observe that cose (2) s the
most generals case (D) is clearly a special (degencrate distribution) ox-
! ampic of (2).% Also, case (3) is the situation with only one class of customer.
rhe results and appropriate references to these results are given in the
& § ‘- yable on p. 146; the reader is urged to see these teferences for further details
E o = ~and restrictions on these optimality results.
s g; = Another comparison among some of these queueing disciplines is given
- E - . - ; CS - o 8 in [SUZU 70| Let D, — D, denote the fact thai the average wait using
% o U 6 S B F e, o * discipiine Dyis greater than or equal o that for £, Then, the followiug
3 O8O Eg OEY 085 Joc a ged relationships hold:
@ g‘é wEE wid wi R 58N LRPT - LPT — FCEFS —> SPT — SRP1
g 8= EL) i gED B8 »a8e o EMS
~ s -3 7 MRS
g . o L LOFS oo
S g & ; . U,
253 . :; ~ o where LPT(LRPT) means .longefst“(remammg)—pmcessmg—tlme—hrst, and
205 E oz Q N 2 G 35 ; = RS means random order of service.
S0 2 2ol da<d J, 22 & 9 < There are cases in which exact processing times are unavailable but
ES > i g 8884 8 g P 5 g:‘i i g E more than just the distribution of service times is known. For example it
%"’ 2 © g §%&1 Q ggs O 5%‘ S ;g g may be possible to separate customers’ required processing times into
: o pERE Eg 2E Ei3 el @ Jarge” and “small.” In particular, many examples indicate [CONW 67]
5 v » @ A7 GE hat this separation into two groups provides a considerable reduction in
§ § mean waiting times as opposed to the FCFS system (see Exercises 3.8 and
2
= KN o 2 9).
i’? Q= ey ; ) 2 As mentioned earlier, other processing-time-dependent queueing dis-
5 2 % — g fé " =" = 5 o ‘d*é iplines will be considered next in Chapter 4.
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EXERCISES

3.1. Using the notion of residual life, show that W,=ax%/2.

3.2, Consider an M/G/1 system with 2 priority groups and some
unspecified queueing discipline which is work-coaserving. We are
given that

- W
I—ap —Bp,
where p, =A%, is the utilization factor for the pth group (p=
L,2yand o<a<1,0<B<1.Find W, in terms of p, p», o, B, and
W(L

3.3, Find the mean and variance for Y, and Y. in Figure 3.1.

34, For M/G/1 we wish to compare FCFS with LOFS,

(@) Show that Wrep= W, we (=W} by using the morent-
generating properties of W*(s).
{(b) Similarly show that ofers = (1 —p)e? -pW? P

3.5, Consider an M/M/1 noaprecmiptive HOL system. Let | be the
smallest integer such that ), o = 1. Solve for Wolp=jj+1, -, P).
Note that W, = for p<j.

3.6. For the system described in the previous problem, establish a
conservation for the sum :

o
2 oW,
Py

3.7.

SR UL NG

56 s, W NV avions Optiitzers for Smgic-ﬁmgt‘
v 3 5966 (1936),
aad W] Havashi, ~On Queie Disciptines.” Jouragi of
ithe Operations Research Society of Japan, 13, 43-38 (1970) f
68 Tombeurntzis, 1D 0

Productiog «
Neval Reseaicl Fogistios (uan

Suzuki, T
“()f“ V
Waiting Time of a Queue.” Jowrnal of Applied Probability. 5, 702
703 (1968). ’
75 Torbett, E. A,
Closed Queueing Systems with Adjustabie Service Rates.” Technicy)
Report Neo 20, Dept. of Operations Rescarch, Stanford University
January 15, 973, '
70 Wolf, R, W. “Work Conserving Priorities,”

Journal of Applied
Probability, 7, 327-337 (1970).

Calculate W, for the nonpreemptive HOL system from Eq. (3.32).

the Property of the Variance OF the -

“Models lor the Optimal Control of Markoviag

3.8.

ENERCISES tad

; h) Y constraetod
Onsider o tonprecmptive HOL systom with =2 constructed
otnidet 4 Gapis 2 '
cew e F e 1
follows, We assume that service fumes ot .
B2(%). hut are known when a cusiener drives.

Al customers are drawn

Lot xa bea

from \ . . e

yor definmye the boundary veiwee tie Twd Brodpe.
~ o p

;
T ! - L
then a job falls in group p =< and if v xe s L

faced in

X e Noa

sroup p o= L

iza} Show that
: AR
SOA Wo l - ,}b( ul
= 20y . .
W ’;2,41 A l§ |- ol 1 p !

Prove that this simple

W over FCES.

()

n

Consider an M/G/U system with a F=4 0

priority discipline. Let

- /.\,.‘, A e }E_*:; W,
W o= 3 W W

Assume p <1 [COLE 71].
(@)

Prove that

where

B system

and Weess 15 the mean w
7 consisis of all jobs with service

Juppose now that group )
il where X has the geaeral

1 S
and group 1 ha

b

&

time < T,
erributi Vv odet oo
distribution BixY Let 74 s
Al . . . ) . . ) i ‘ ) S
threshold such that W is minimized, and let W, be this

minimum average wati.

he the optuimum vaiue ol this

(i) Show that
Woin X

Weees 7o

(iiy Show that ma 18 defined through



313, Consider a P=7

PRIOETIY 00000 NG

Consl‘idcx a two priority M/G/1 system for which W, =2
o=y -
(@) Suppose W, =5, Fipd W..

{,b) fi. the svstem is HOL {(nonpreemptive), find W, and W
(¢} If the system ig FCFS, find W, and W..
(d) If the system is LCFS, find W, and W,.

Consider a P=2 nonpreemptive priority queucing system with
AM=X=1and £ =1 and §, =1, '
@) Design a systc i i
sig system which achieves 3 perf i
; Vs erformance r
W::/W, :(I‘<]‘ atlo
{b) Supposc a customer enters at some random time and must
Jrav $ S ety gy o I M i . )
;wan for service unfil the system empties. Give an expression
or the ratio of this customier’s average waiting time to His
average wait in an FOFS system with the same input

342, Consider a delay-dependent discipline  for which O0zb,=
= .= 3 g gy j i R :
by= = br. Find the set of Simultaneous equations simijar to Eg, -

{3.48) that define W, (p=1,2,..., P).

2, rth-order time-dependent priority discinl:
. . ] ) topriority discipline
with the following cost tuniction (for some constant, m:): :

-

C — zl CP/\\PIT_ W,(; )]:ru 1
p=

{a} For a given pai b}, express WO ; '
3 4 /g Iipdn‘ (b1, b}, express W, in terms of Wo, ps, b
and v {p=1,2). ’
B E“CI' 0= R - 1
by 1 l—“-<b1/b7) = 4, 1nd the optimum value for bi/bs 50 as to
mmimize o

]

mder the rtheorder time s
wish 1o prove that Eq. (3.50) fol]
fa} Lot ri=1 with no lose of
omers whose prio
Show that the énffz S

he evactiv the oo
veexacty the same |

e =1 cage i Fioy

bl Use mduction (o esig isht the ooy
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EXERCISIS 153

(b} Show that the average cost C given in Eq. (3.76) is correct
for M/M/1.

{¢) For bribes uniformly distributed over the interval [0, M], find
the average cost C.

Cousider a nonpreemptive M/M/m system in which the average
service time for the ith server is 1/ where 1/p <1/pa<<- - <
1/ That is, the ith server is faster than the (i+ st on the
average. Customers join the queue in order of arrival. When the
ith server becomes free, he offers his services to the first queued
customer; if this customer refuses service from him (t.e., the
customer is holding out for a faster server), he then offers his
services to the second queued customer, and so on. If no queued
customer accepts, he remains idle until possibly some newly arriv-
ing customer accepts him. Each customer uses a (local) strategy
that minimizes his average time in system. No service times are
known to any customers (not even their own service time). Let ki
be that position in the queue at which a customer should first
accept the ith server [KLEI 64a].
Show that the critical positions k; must satisfy
k<Sickt1

where Si:M1+“’2+' : +{Ja and k;=1.

Consider an M/G/1 system with N queues that are labeled Q1,
Q2,..., ON. Arriving customers join the tail of Q1 and after
receiving service [from distribution B(x}], they join the tail of Q2,
and so on, finally they jom ON. receive service. and then depart at
Jast. Fach custome: ives N independent services
from B(x). We also assume a priority orderit g among the queues,
which we denote by P={q;, g5, - -, gu}, which implies that Qi has

g tor cxamiple, P=d10 %) D) implies that

priority over (Jj i ’
Q1 has highest priority, (3 is next, and OF is last. This is the
order in which a gucue is selected for service whenever a service
completion oceurs. Within a piven queue, service is FORS.

Let pe = Plk “services” in system at departare instants), where
cach newly armving custoner counts for N “services.” Let Q(z) =

k v SR
a7t bel poe AEN

fay  ind Q(z).
Now jet N =2 and P=12, 11 fet

. <« -;‘f«, P I
Rizy, 2,)= Lo Lo PR, KT’)‘Z"’Z” ’
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whaere p(k, £ C Pk customers in O and i customers in ij,
{his too s eateutated s depariuee nstanis), )
) For the given priority ordering, whai nossidle valges Can i

W 7 & ¥ Al

take?

) Show rhat the answer to (h) allows us to weite
plki k) =po, o,
(@) Show that
20, 22) = S TPIBFA A2z
R(ZhZ])h !1 q.()\
[Hint:  Counsider the series obtained for the sum Qi{z)+
Q{~2z) and for the difference Q(z)~ Q(~z)]
(e} From (d), find Efk, 1

Let us now consider P = {1, 21

B Find 1, the average time a customer spends in the System.

As a variation on the cost function given in Eq. (3.65), consider an
FCES M/M/1 system for which C'=uC, +ATa where C, is the
cost per unit of service rate for g server. C s thus the average cost
of running the facility. Find the optimum valye of i that
minimizes

Show that Wepr, the mean wait for a shortest«processing-time-ﬁrst
(same as SJF) disciptine is related to Tsrer, the mean time in
system for a shortcst~~rcmaining—processz’ng-—time~ﬁrst discipline for
M/M/1 as follows:

Wipy = ol JRv

for an M/M/1 SYSIOR with A =09 and =10 calculate and
COmpare Weer, Wppr, and W,

Consider an M/G/1 System  operating  under the shortest-
remaining-proce J-time-first (SRPT) discipline in which all eos-
nes are known ahead of time. A new customer
will preempt a customer i service only if his service time is fess
than that which remains for the customer in service, At a service
completion, the shortest job is served next,

Show that the mean time in system Tsrer is

tomer service

TSRPI = jﬂ ' Jﬂ \’i( — dx~~-~ dB(V)

v =0 y 1- A
AL LUy -8y
+2J;—(> L['—/\f,(y”[l W/\\fx(_y‘” dB(y)

whote
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i ; .
fly) = | ' dB ()
' Jo
. . R I 5, 7,8, 13, 15,17,
Consider a sequence of arvival times {1, 3,4, 5,7, ¢ PR
Consiaer a seq . 6,2, 3,

7

sty s

2, L

responding sequence of service times {
74 and a corresponding sequen

. prior to the arrival
2,2.2, 3, 1} Assume the system s einpty prior {o the
z A ey s v AR ‘

Ly L

at time 1.

{a)

Y
{©
B
(=)
{f)

(g

i
H 2 { =S =Y =e > <. kY A\ \/ k)(}
Caleulate the average wait for these eleven customers wh
aleulat
the discipline is FCFS.
Repeat for LOES. ]
Repeat for SPT (8JF).
Repeat for LPT.
Renecat for SRPT.
Repeat for LRPT. ‘ o it
Confirm the D) — D, relationship given in the text fo

o
(9]
[
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8ix Cases.






