12.8. Consider a hospital with a single operating room. The IC unit has 4
beds. The operating room has to be scheduled from Monday through Friday;
the IC unit is staffed 7 days a week. There are two types of elective surgerieg
that have to be scheduled. Both types of surgeries require half a day of the
operating room. However, a patient that undergoes surgery of the first type
needs to remain two days in the IC unit, whereas a patient that undergoes
surgery of the second type needs four days of care in the IC unit. Each week
six surgeries of the first type and four surgeries of the second type have to be
scheduled. What is the optimal schedule?

Comments and References

An enormous amount of research has been done on planning and scheduling in health
care. Pierskalla and Brailer (1994) presented an overview of Operations Research
applications in health care delivery. Brandeau, Sainfort and Pierskalla (2004) edited
a handbook on Operations Research in health care. Several chapters in this book
focus on planning and scheduling applications in health care.

A fair amount of research has been done on surgery scheduling, at times also
referred to as operating theatre scheduling. It has been clear from the outset that
surgery scheduling is a form of stochastic scheduling in which the durations of the
operations are random variables drawn from known distributions. May, Strum and
Vargas (2000) did a thorough study indicating that the Lognormal distribution does
fit operating room data quite nicely. The first analysis of a single operating room
with two consecutive surgeries was done by Weiss (1990). Since then, the single
operating room scheduling problem has received 2 significant amount of attention;
see, for example, Denton, Viapiano and Vogl (2007). The set packing formulation
for the multiple operating room scheduling problem is due to Velasquez and Melo
(2006); see also Velasquez, Melo, and Kuefer (2008). The robust surgery loading
problem (assuming random durations) is due to Hans, Wullink, van Houdenhoven,
and Kazemier (2008).

Conforti, Guerriero, and Guido (2008) developed the integer programming for-
mulation for the radiotherapy treatment problem. A similar problem has also been
studied by Fei, Combes, Meskens, and Chu (2006).

The constraint programming approach for the emergency room staffing prob-
lem was developed by Rousseau, Gendreau and Pesant (2002); see also Gendreau,
Ferland, Gendron, Hail, Jaumard, Lapierre, Pesant and Soriano (2006).

The case study relating the surgery scheduling problem with bed occupancy
levels is due to Belien (2006) and Belien and Demeulemeester (2007). As discussed
in Section 12.6, the problem underlying this case can be modeled as a flexible flow
shop with no buffer storages between the stages. Hsu, de Matta, and Lee (2003)
indeed modeled a similar problem as a flexible flow shop and developed a tabu-
search heuristic to optimize their environment. Pham and Klinkert (2008) modeled
the surgical case scheduling as a flexible job shop and developed a Mixed Integer
Programming formulation. Another interesting case study is due to Vissers, Adan,
and Bekkers (2005).

Chapter 13

Workforce Scheduling

13.1 Introductioncivuiiiiiiiiiineneeannns gi’;
13.2 Days-Off Schedulingt o

13.3 Shift Schedulingcoviiiiiiiiiiiinnn. 52
13.4 The Cyclic Staffing Problem....... SRRREEEEREE
13.5 Applications and Extensions of Cyclic Staffing .. 329
13.6 Crew Schedulingo i, 5
13.7 Operator Scheduling in a Call Center 3

13.8 DiSCUSSION v vttt vt nnetnnensaaasanereonasnnss

13.1 Introduction

Workforce allocation and personnel scheduling deal with th'e arrangement of
work schedules and the assignment of personnel to shifts in order to cover
the demand for resources that vary over time. These problen.ls are very im-
portant in service industries, e.g., telephone operators,. hospital nurses, po-
licemen, transportation personnel (plane crews, bus drlvers.,), and so on. In
these environments the operations are often prolonged and 11Tregular apd the
staff requirements fluctuate over time. The schedules are typlcally subject t‘o
various constraints dictated by equipment requirements, union rules, and so
on. The resulting problems tend to be combinatorially hard.

In this chapter we first consider a somewhat elemeptary personrel ‘scl.isdul—
ing problem for which there is a relatively simple solution. We t}Te‘zn (fiebcrl e ari
integer programming framework that encorr.lpasses a la.rge class (f) Eerso.nrtle
scheduling problems. We subsequently conS}der a special class‘ onl : eSElj 1‘n e—f
ger programming problems, namely the cyclic stgfﬁng problems. 11)5 ¢ iss .01
problems has many applications in practice and is easy from a com mfa or?
point of view. We then consider several special cases and extensions of cyclic

. . . 317
M.L. Pinedo, Planning and Scheduling in Manufacturing and Services,

DOI: 10.1007/978-1-4419-0910-7_13, © Springer Science + Business Media, LLC 2009

©

staffing. In the sixth section we discuss the crew scheduling problems that oc-
cur in the airline industry. In the subsequent section we describe a case that
involves the scheduling of operators in a call center.

13.2 Days-Off Scheduling

We first consider a fairly elementary personnel assignment problem. Each day
of the week a number of employees have to be present. The number may

differ from day to day, but the set of requirements remains the same from
week to week. There is a total number of employees available and each has to T

be assigned a sequence of days. However, the assignment of days to any given
employee may be different from one week to the next. By a week, we mean
seven days that start with a Sunday and end with a Saturday. The problem
is to find the minimum number of employees to cover a seven day a week
operation such that the following constraints are satisfied.

(i) The demand per day, n;,j =1,...,7, (n1 is Sunday and nr is Saturday)
is met.
(i) Each employee is given k; out of every k2 weekends off.
(iii) Each employee works exactly 5 out of 7 days (from Sunday to Saturday).
(iv) Each employee works no more than 6 consecutive days.

These constraints can have certain effects on the schedule of an employee. For
example, if an employee has one weekend off, then he cannot work six days
straight and have his next day off on the following Sunday, because he violates
then the third constraint (working exactly 5 days out of seven days that start
with a Sunday and end with a Saturday). However, an employee can have a
consecutive Saturday, Sunday and Monday off, as long as he works after that
for at least 5 days in a row. Actually, he could have a weekend off and take
again a single day off after 2 or 3 days of work.

We now describe a method that generates an optimal schedule one week
at a time, i.e., after the schedule for week ¢ has been set, the schedule for week
i+ 1 is determined, and so on. It turns out that there exists a cyclic optimal
schedule that, after a number of weeks, repeats itself.

There are three simple lower bounds on the minimum size of the workforce,
W. First, there is the weekend constraint. The average number of employees
available each weekend must be sufficient to meet the maximum weekend
demand. In ky weeks each employee is available for ky — k; weekends. So,
assuming that (as close as possible) the same number of workers get each of
the ko weekends off:

(k‘z - kl)W > kg max(nl, TL7)

and therefore
ko max(ny, ny)

>
Wz [P,

Second, there is the total demand constraint. The total number of employee
days per week must be sufficient to meet the total weekly demand. Since each
employee works five days per week,

7
=1
or 7
1
j=1

Third, we have the maximum daily demand constraint

W > max(nq,...,n7).

The minimum workforce must be at least as large as the largest of these three
lower bounds. In what follows, we present an algorithm that yields a schedule
that requires a workforce of a size equal to the largest of these three lower
bounds.

The algorithm that solves this problem, i.e., that finds a schedule that sat-
isfies all constraints using the smallest possible workforce, is relatively simple.
Let W denote the maximum of the three lower bounds and let n denote the
maximum weekend demand, i.e.,

n = max(ny, n7).

Let uj =W —mny, for j =2,...,6,and u; =n —mny, for j =1 and 7; the
u; is the surplus number of employees with regard to day j. The second lower
bound guarantees that
7
Z u; = 2n.
j=1

It is clear that employees should be given days off on those days that have
a large surplus of employees. The algorithm that constructs the schedule uses
a list of so-called off-day pairs. The pairs in this list are numbered from 1 to
n and the list is created as follows: First, choose day & such that

wp = max(uq, ..., ur).

Second, choose day I, (I # k), such that u; > 0; if u; = 0 for all [# k, then
choose | = k. Third, add pair (k,l) to the list and decrease both u; and u;
by 1. Repeat this procedure n times. At the end of the list pairs of the form
(k, k) may appear; these pairs are called nondistinct pairs.

Now number the employees from 1 to W. Note that since the maximum
demand during a weekend is n, the remaining W —n employees can have that
weekend off. Assume that the first day to be scheduled falls on a Saturday,
and the first and second days are weekend 1.

Algorithm 13.2.1 (Days-Off Scheduling).
Step 1. (Schedule the weekends off)

Assign the first weekend off to the first W — n employees.
Assign the second weekend off to the second W — n employees.

This process is continued cyclically with employee 1 being treated as the
next employee after employee W.

Step 2. (Categorization of employees in week 1)

In week 1 each employee falls into one of four categories.

Type T'1: weekend 1 off; 0 off days needed during week 1; weekend 2 'ojj" I

Type T2: weekend 1 off; 1 off days needed during week 1; weekend 2 on
Type T'3: weekend 1 on; I off days needed during week 1; weekend 2 off
Type T'4: weekend 1 on; 2 off days needed during week 1; weekend 2 on

Since there are exactly n people working each weekend,

| T3 |+ | T4 |=n (because of weekend 1);
| T2 |+ | T4 |= n (because of weekend 2).

It follows that | T2 |=| T3 |.
Pair each employee of T2 with one employee of T'3.
Step 3. (Assigning off-day pairs to employees in week 1)
Assign the n pairs from the top of the list.
First to employees of T'4: each employee of T4 gets both days off.

Second to employees of T'3: each employee of T3 gets from his pair the
earlier day off and his companion of T2 gets from that same pair the later
day off. (So each employee of T3 and T2 gets one day off in week 1, as
required.)

Step 4. (Assigning off-day pairs to employees in week i)
Assume a schedule has been created for weeks 1,...,5— 1.

A categorization of employees can be done for week i in the same way as
in Step 2. In order to assign employees to off-day pairs two cases have to
be considered.

Case (a): (All off-day pairs in the list are distinct)

Employees of T4 and T3 are associated with the same pairs as those they
were associated with in week i — 1.

A T4 employee gets from his pair both days off.

A T3 employee gets from the pair he is associated with the earlier day off
and his companion of T2 gets from that pair the later day off.

Case (b): (Not all off-day pairs in the list are distinct)
Week i is scheduled in eractly the same way as week 1, independent of
week ¢ — 1.

Set i =1+ 1 and return to Step 4.

This algorithm needs some motivation. First, it may not be immediately
clear that we never will be confronted with the need to schedule a nondistinct
pair of days to a type T'4 worker. In that case a worker needs two weekdays
off in a week, and we try to give him the same day twice. It can be shown that

__the number-of T4 employees is always smaller than or equal to the number of

distinct pairs.

If there are non-distinct pairs, i.e., pairs (k, k), in the off-days list, then
week 1 is independent of week ¢ — 1. It can be shown that every pair contains
day k and the maximum workstretch from week ¢ — 1 to week i is 6 days.
The only time that the workstretch is greater than 5 days is when there are
nondistinct pairs.

In the next example, there is one distinct pair, one nondistinct pair, and
| T4|=1.

Example 13.2.2 (Application of Days-Off Scheduling Algorithm).
Consider the problem with the following daily requirements.

day 7 1 2 3 4 5 6 7
Sun. Mon. Tues. Wed. Thurs. Fri. Sat.
Requirement 1 0 3 3 3 3 2

The maximum weekend demand is n = 2 and each person requires 1 out of 3
weekends off, i.e., ky = 1 and k2 = 3. So

W>[(3x2)/3-1)]=3,
W > [15/5] = 3,
W > 3.

So the minimum number of employees W is 3 and W —n = 1. We assign a
weekend off to one employee each week. This results in the following assign-
ment of weekend days off for the three employees.

SISMTWTFS|ISMTWTFS|ISMTWTFS

X|X X
XX
3 XX

DO

At this point, there is one surplus employee on Sunday and three on Monday.

dayj 1234567 Y

u; 1300000

There are 2 pairs of off days, one distinct and one non-distinct.

Pair 1: Sunday - Monday;
Pair 2: Monday - Monday;

We will use these pairs for each week.
There is one nondistinct pair in the list. The categorization of the em-

ployees in the first week results in the following categories: The first pair is- -

assigned to the T4 employee (one each week) and the second pair is split
between the remaining two employees (types T2 and T'3).
Applying the next step of the algorithm yields the following schedule.

SISMTWTFS|SMTWTFS|SMTWTFS

1X|X X XX X X
2 X XX X XX
3 XX X XX X

The schedule produces a six-day workstretch for one employee each week. This
cannot be avoided since the solution is unique.

It can be shown that if all off-day pairs are distinct then the maximum
workstretch is 5 days. In the next example all off-day pairs are distinct.

Example 13.2.3 (Application of Days-Off Scheduling Algorithm).
Consider the problem with the following daily requirements.

doy j 1 2 3 4 5 6 7
Sun. Mon. Tues. Wed. Thurs. Fri. Sat.
Requirement 3 5 5 5 7 7 3

The maximum weekend demand n = 3 and each person requires 3 out of 5
weekends off, i.e., k&y = 3 and ky = 5. So

W 2>1(5x3)/2] =8,
W >[35/5] =1,
W >T.

So the minimum number of employees W is 8 and W — n = 5. We assign

weekends off to 5 employees each week. This results in the following assignment
of weekend days off for the eight employees.

SISMTWTFS[SMTWTFS|[SMTWTF S
1|x(x X|x X
2|X|X X|X X
3|X|X X|X X
41XIx XX X
51X|X X|X
6 X|X X|x
7 XX X|X
8 X|X X

" At this point, there are 8 people available each weekday, so the surplus u; is

dayj 1 2345 67
wj 0333110

There are a number of ways in which 3 pairs of off days can be chosen. For
example,

Pair 1: Monday - Tuesday;
Pair 2: Tuesday - Wednesday;
Pair 3: Tuesday - Wednesday.

We will use these pairs for each week. o
There are no nondistinct pairs on the list. The categorization of the em-
ployees in the first week results in the following 4 categories:

T1:1, 2
T2:3,4,5
T3:6,7,8
T4: -
Employee 3 is paired with 6, 4 with 7 and 5 with 8. Thus we need three pairs

of weekdays to give off. . -
Categorization of the employees in the second week yields the following

categories.

T1:6,7
T2:1,2,8
T3:3,4,5
T4: —

Employee 1 is paired with 3, 2 with 4, and 8 with 5. . .
Categorization of the employees in the third week results in the following

4 categories.

o

=4
Wy
= ot W
N O W

Employee 1 is paired with 6, 2 with 5, and 8 with 7.
Applying the next step of the algorithm results in the schedule shown by
the following table:

MTVVTFSSMTWTFSSMTWTFS

PR M|

PP |
N‘—l
><<—l><
T—>><><
> >
o >
N‘—'l
:><><<—1><
B B
EelE el
P4 e
[
> >
e
PR e

W~ O Ty Lo 09

The arrows illustrate how a pair of off-days is shared by two employees.
All pairs are distinct, so the maximum workstretch is 5 days. It can be easily
verified that the schedule is cyclic and the cycle is 8 weeks.

It can be shown that schedules generated by the algorithm always satisfy
the constraints. Because of the way the off-weekends are distributed over the
employees (evenly) and because of the first lower bound, it is assured that each
employee is given at least k; out of ks weekends off. That each employee works
exactly 5 days out of the week (from Sunday to Saturday) follows immediately
from the algorithm. That no employee works more that 6 days in one stretch
is a little harder to see. An employee may have a six day workstretch (but not
longer) when there are non-distinct pairs (if all pairs are distinct, then the
longest workstretch is 5 days). If there are non-distinct pairs (k, k), then day
k has to appear in all pairs. In the worst case, an employee can be associated
with pair (7,k) in week i — 1 and pair (k,1) in week i, where j < k < [. In
this case, he will receive at least day k off in week i — 1 as well as in week i
which results in a six day workstretch. The stretch is smaller if either k < §
or [< k, for then he would receive day j or day [off.

It can be shown that there exists an optimal schedule that is cyclic and
that the algorithm may yield this schedule. The number of weeks in such a
cyclic schedule can be computed fairly easily (see Exercise 13.1).

13.3 Shift Scheduling

In the scheduling problem discussed in the previous section there are various
assignment patterns over the cycle. The cost of assigning an employee to a
certain work pattern is the same for each pattern and the objective is to min-
imize the total number of employees. The fact that each assignment pattern
has the same cost is one reason why the problem is relatively easy.

In this section we consider a more general personnel scheduling problem

and follow a completely different approach. We consider a cycle that is fixed

in advance. In certain settings the cycle may be a single day, Wh.ile in others
it may be a week or a number of weeks. In contrast to the previous saactign,
each work assignment pattern over a cycle has its own cost and the objective
is to minimize the total cost. .

The problem can be formulated as follows: The predeterr'mned cycle con-
sists of m time intervals or periods. The lengths of the periods do not nec-
essarily have to be identical. During period ¢, ¢ = 1, ... M, the presence of
b; personnel is required. The number b; is, of course, an integer. There are
n different shift patterns and each employee is assigned to one and only one
pattern. Shift pattern j is defined by a vector (a1, az;,...,am;). The value

" a;; i§either 0 or 1; it is a 1 if period ¢ is a work period and 0 otherwise. Let ¢;

denote the cost of assigning a person to shift j and z; the (in.teger) decision
variable representing the number of people assigned to shift j. The problem
of minimizing the total cost of assigning personnel to meet demand can be
formulated as the following integer programming problem:

minimize c1T1 + CaT2 + -+ CpTy
subject to

a1121 + 412T2 + - + G1pTn > bl

2121 + G22%2 + - - - + AonTn > by

Am1T1 -+ Am2T2 + -+ AmnTn Z bm

z; >0 forj=1,...,n,
with z1,...,z, integer. In matrix form this integer program is written as
follows.
minimize ¢z
subject to
Az >b
>0

Such an integer programming problem is known to be s.trongly NP-hard
in general. However, the A matrix may often exhibit a special stru?ture. For
example, shift j, (a15,...,am;), may contain a contiguous ?et of 1’s (a CO}?_
tiguous set of 1’s implies that there are no 0’s in betwee.n 1 s).' However, the
number of 1’s may often vary from shift to shift, since it is possible that some
shifts have to work longer hours or more days than other shifts.

Example 13.3.1 (Shift Scheduling at a Retail Store). Consider a retz-iil
store that is open for business from 10 a.m. to 9 p.m. There are five shift

patterns.

pattern Hours of Work Total Hours Cost

1 10 a.m. to 6 p.m. 8 $ 50.00
2 1 p.m. to 9 p.m. 8 $ 60.00
3 12pm. to 6 p.m. 6 $ 30.00
4 10am. to1l pm. 3 $ 15.00
5 6 p.m. to 9 p.m. 3 $ 16.00

Staffing requirements at the store vary from hour to hour.

Staffing
Hour Requirement

10 a.m. to 11 a.m.
11 a.m. to 12 a.m.
12 a.m. to 1 p.m.
1 p.m. to 2 p.m.
2 pm. to 3 p.m.
3 p.m. to 4 p.m.
4 p.m. to 5 p.m.
5 p.m. to 6 p.m.
6 p.m. to 7 p.m.
7 p.m. to 8 p.m.
8 p.m. to 9 p.m.

[l BN =2 BN file BN T e N)

The problem can be formulated as i i
(6 an integer program with the f ing ¢
vector, A matrix and b vector: ; © following ¢

¢ = (50,60, 30,15, 16)

]

N R O 00~ A O o

100107
10010
10110
11100
11100
A=|11100
11100
11100
01001
01001
101001 | 8

o
I

1(']learly, an integf:r solution .:cl, Z2,T3, T4, %5 is required. However, solving the
Slpear I;lrogrammlng relaxation of this problem yields the solution (0,0,8,4,8)
ince this solution is integer, it is clear that it i i o integer

. , s also optimal for t
programming formulation. g or the nteger

Even though the integer programming formulation of the general personnel
scheduling problem (with an arbitrary 0—1 A matrix) is NP-hard, the special
case with each column containing a contiguous set of 1’s is easy. It can be
shown that the solution of the linear programming relaxation is always integer.
There are several other important special cases that are solvable in polynomial

time. In the next section we discuss one of them.

13.4 The Cyclic Staffing Problem

A classical personnel scheduling problem is the cyclic staffing problem. The
objective is to minimize the cost of assigning people to an m period cyclic
schedule so that sufficient workers are present during time period i, in order
to meet requirement b;, and each person works a shift of k consecutive periods
and is free the other m — k periods. Notice that period m is followed by period
1.

An example is the (5,7)-cyclic staffing problem, where the cycle is seven
days and any person works 5 consecutive days followed by two days off. As
described in the previous section, this problem can be formulated as an integer
program. In the integer programming formulation a column vector of the A
matrix denotes a possible shift assignment that specifies which two consecutive
days are off and which 5 days are workdays. There are 7 possible column
vectors. Even though the A matrix has a very special structure in this case,
the columns do not always have a contiguous set of 1’s. So this is not a special
case of the example described in the previous section.

[1001111]
1100111
1110011
A=11111001
1111100
0111110
(0011111]

The cost ¢; of column vector j, i.e., @15, - . ., Gmj, Tepresents the cost of having
one person work according to the corresponding schedule. The b vector is
again the requirements vector, i.e., b; denotes the number of people that have
to be present on day . The integer decision variable z; represents the number
of people that work according to the schedule defined by column vector j.
This results in an integer programming problem with a special structure.
The special structure of this integer programming problem makes it pos-
sible to solve it in an efficient manner. Actually, it can be shown that the
solution of the linear program relaxation of this problem is very close to the
solution of the integer programming problem. Because of this the following

algorithm leads to an optimal solution.

Algorithm 13.4.1 (Minimizing Cost in Cyclic Staffing).
Step 1.

Solve the linear relazation of the original problem to obtain ...l

Ifzy, ..., 2l are integer, then it is optimal for the original problem. STOP.
Otherwise go to Step 2.

Step 2.

Form two linear programs LP' and LP" from the relazation of the original
problem by adding respectively the constraints

Tr4 otz =l + 2
and
$1+...+wn: I—‘/E/1+.+‘T;L]'
LP" always will have an optimal solution that is integer.

If LP" does not have a feasible solution, then the solution of LP"

' 18 an
optimal solution to the original problem.
If LP' has a feasible solution, then it has an optimal solution that is integer

and the solution to the original problem is the better one of the solutions
to LP" and LP". STOP.

The next example illustrates the use of the algorithm.

Example 13.4.2 (Minimizin

g Cost in Cyclic Staffing). Consider the
(3,5)-cyclic staffing problem

10011 3
11001 4
A=111100 b= {6
01110 4
00111 7

The cost vector is
¢= (3.6, 4.8, 5.5, 3.7, 5.2)

Applying Algorithm 13.4.1 leads to the following results.
Step 1. Solving the linear programimning relaxation yields

Il

2 = (L5, 0, 4.5, 0, 2.5).

The value of the objective function is 43.15.
Step 2. Adding to the original problem the constraint

1+ T2+ 23+ 24 +35 =8

results in a problem without a feasible solution. Adding to the original problem
the constraint
T1 + To + T3+ Ta+ s =9

yields z = (2,0,4,1,2) with objective value 43.3. So the optimal solution is
7 = (2,0,4,1,2) with objective value 43.3.

13.5 Applications and Extensions of Cyclic Staffing

In this section we discuss three applications of cyclic staffing.

(i) Days-Off scheduling. Consider the following special case of the problem
discussed in Section 13.2. Each employee is guaranteed two days off a we.ek,
including every other weekend (a week starts with a Sunday and .ends w1tb
a Saturday) and is not allowed to work more than 6 days consef:utlvely. Tl}ls
problem can be formulated as an integer program with the following A matrix.

([000000---111111---]
000000---101101-
001111---01101T1--
110001-.-110111-
111110---111110--
111111---111111-
1171111---111111-.
111111---000000-
101101---000000
011011---001111
110111---110001
111110---111110
111111---111111
111111111111
000000---111111

000000101101

The number of possible patterns tends to be somewhat large, since there are
many patterns that satisfy the conditions stated. Each row in the matrix
represents a day in the week. The first two rows, the middle two rows and the
last two rows represent weekends. The first group of columns correspond to
the assignments with the first and the third weekend off and the second group
of columns to the assignments with the second weekend off. This problem can
be solved by the technique discussed in the previous section. .
The general model described in Section 13.2 can also be viewed gs a cy§hc
staffing problem. However, it does not fit the framework described in Section

'13.4 that well, because of a number of differences. For starters. the ¢ cle length
is not fixed a priori. In addition, even if the cycle length We;e ﬁxegI’ it Woild
be hard to describe this problem as an integer programming pro’t;lem Th

num‘?er of possible columns is very large and not easy to enumerate -)

. (m) Cyclic staffing with overtime. A basic staffing problem occﬁrs in fa

cilities such as hospitals that operate around the clock. Suppose that there_z
are fixed hourly staff requirements b;, and three basic work shifts, each of 8
hours.duration: 8 am. to 4 pm., 4 p.m. to midnight and 12 p.m.’ to 8 a.m

ngrtlme of up to an additional 8 hours is possible for each shift. A person-nei
assignment that meets all staffing requirements at minimum cost has to be

found. The constraint matrix A consists of 9 submatrices, each with 8 rows’

and 9 columns.

1 0 o\l
0\1 1 0
0 0\1 1

The submatr'ix 0 is a matrix with all entries 0. The submatrix 1 is a matrix
with all entries 1 and the submatrix 0\1 is the matrix

(0111111117
001111111
000111111
000011111
000001111
000000111
000000011
1000000001 |

"This problem can be solved by linear programming.

(i) Cyclic Staffing with Linear Penalties for Understaffing and Over-
staffing. Suppose the demands for each period are not fixed. There is a lin-
ear penalty ¢ for understaffing and a linear penalty ¢/ for overstaffing. The
penalty ¢;' may actually be negative, since there may bel some benefits in 'over—

staffing. Let z; denote the level of understaff; i iod i
¢ ng during period i. T
overstaffing during period i is then & g period 3. The level of

b; — (ailxl + ajoxg 4+ -+ + amxn) — 1‘;

The problem can now be formulated as the following linear program.

minimize ¢z + &7’ + &' (b — Az — z')
subject to
Az +17' > b
% >0 Z,Z integer.

If A is the matrix for the (k,m) staffing problem (or any other row circular
matrix), the problem can be solved by the algorithm described in the previous
section, provided that the problem is bounded from below. It turns out that
the problem is bounded from below if and only if ¢—~¢”A >0 and ¢—¢"’ > 0.

13.6 Crew Scheduling

Crew scheduling problems are very important in the transportation industry,
especially in the airline industry. The underlying model is different from the
models considered in the previous sections and so are the solution techniques.

Consider a set of m jobs, e.g., flight legs. A flight leg is characterized by
a point of departure and a point of arrival, as well as an approximate time
interval during which the flight has to take place. There is a set of n feasible
and permissible combinations of flight legs that one crew can handle, e.g.,
round trips or tours (the number n usually is very large). A round trip may
consist of several flight legs, i.e., a plane may leave city A for city B, then
go to city C, before returning to city A. Any given flight leg may be part of
many round trips. Round trip j, j = 1,...,n, has a cost ¢;. Setting up a crew
schedule is equivalent to determining which round trips should be selected
and which ones not. The objective is to choose a set of round trips with a
minimum total cost in such a way that each flight leg is covered exactly once
by one and only one round trip.

In order to formulate this crew scheduling problem as an integer program
some notation is required. If flight leg ¢ is part of round trip j, then a;; is
1, otherwise a;; is 0. Let x; denote a 0 — 1 decision variable that assumes
the value 1 if round trip j is selected and 0 otherwise. The crew scheduling
problem can be formulated as the following integer program.

minimize c¢121+coxo+- - +Cp Ty

subject to

a11T1 +a12x2 + -+ a1y, =1

U121 + A22%o + -+ + Q2 ln = 1

Am1Z1 + Gm2T2 + -+ AmnTy =1

x; € {0,1} forj=1,...,n.
Each column in the A matrix is a round trip and each row is a flight leg that
must be covered exactly once by one round trip. The optimization problem
is then to select, at minimum cost, a set of round trips that satisfies the
constraints. The constraints in this problem are often called the partitioning

equations and this integer programming problem i
Partitioning problem (see Appendix A). For a feasible solution (zy, ... 'y Tn),

the variables that are equal to 1 are referred to as the partition. In what
follows we denote a partition ! by J! = {7] xé =1}

S referred to as the Set

This problem is known to be NP-hard. Many
meration schemes (branch—and-bound)
In many of these approaches the conc

ph= (o}, b, ... ,P4,) s a set of feasible
J! satisfying

heuristics as well ag enu-
have been proposed for this problem,
ept of row prices is used. The vector
row prices corresponding to partition

m
Zpﬁaij =¢j 7€ J.
=1

The price pk may be interpreted as an estimate
(flight leg) 4 using solution J!. There are usually
for any given partition.

The row prices are of crucial importance in computing the change in the
value of the objective if a partition J! is changed into partition J2. If Z1 (Z?)
denotes the value of the objective corresponding to partition 1 (2), then

Z: =71 _ Z <ipgaij—cj).

jeJ? i=1

of the cost of covering job
many feasible price vectors

The quantity
m
05 =Y play — ;
i=1

potential savings with respect to the first partition
ng column j. It can be shown that if

can be interpreted as the
to be obtained by includi

m

1 .
qujaijgcj]:1,...,71,
i=1

for any set of feasible row
Jt is optimal.

Based on the conce
used for finding better

prices p! corresponding to partition J1, then solution

Pt of row prices the following simple heuristic can be
solutions, given a partition J! and g corresponding
pl. The goal is to find a better partition J2, In the

inclusion in J2,
Algorithm 13.6.1 (Column Selectjo
Step 1.

Set J2 =0 and N = {1,2,...,n}.

n in Set Partitioning).

r

Step 2.

Compute the potential savings
m |
Uj:Zp}aij—cj j:L...,n.
i=1
Find the column k in N with the largest potential savings,
m
1. _ e
Zpi Qg — C.
i=1

Step 3. |
Fori=1,....m, if ajx =1 set a;; =0 for all j # k.

Step 4.
Let J? = J2U{k} and N = N — {k}.
Delete from N all j for which a;; =0 foralli=1,...,m

Step 5.
If N =0 STOP, otherwise go to Step 2.

The next example illustrates the heuristic.

ing and Truck Routing). Cons@er a
R 1?61:1?1 é(éﬁgnwts Ssceléel;iilglilregl?).l. From the depot, a single delivery
e daL to each on7e of the clients. Assume that each ’.cruck can servE
e mal'e nts on a single trip. The objective is to determine ’W.hl(?h tru}c
Shoud tw?) lehi(;h client and the routing of the trucks that minimizes .t ie
Should' ano ")cv veled. Each column in the table below represents one p9581b e
- dlStan(je ; gj;he c-.is equal to the total distance traveled for each tI‘lP. For
ot 1rloute ﬁ?mn 6 rejpresents a vehicle proceeding from the depot tq Cll?{ltli’
:ﬁ:rrln Exf ’tgoclient 2, and from there back to the erot. The value of cg is 14,
which is the total distance traveled during the trip.

Routel 2 3 4 5 6 7 8 91011 12 13 lgl 1?)

cj 810 4 4 21410 8 810 11 12 6
1000011110000 00
01000100011 1000
0010001001001 T10
0001000100110 101
00001000100 1011

Pp - iti f as lbl
p .
S ose we Seec‘ J |72,3747‘)aS(H Is .a[(8]} A Se‘().e S (S)
le‘CeS I'S F (87 107 17 172) Ille COHGSDOIldlIlg p0telltlal ﬁdVlIlgS are

selecting the column with
{6,13,5}. This new partitio

Mf‘my sets of row prices are fe
using the following procedure.

=6 -4 -6 -6 -7 _1p 9 g

n has a cost of 72
Z1 = 28 for the first partition.

9 10 11

12 13 14 15

4 3

0 2 ¢

It is clear that

pi +p3 = 14,
Choose
1
2__ M 8
P X Cp = =
p%—l-p% 6 8+10X14—6.222
and
1
B P g =
s 8+10><14:7.777.
Using the row prices P = (62 78 3

computed and the heuristic y
cost Z3 = 20.

s 3, 2) the potential savin
: s can b
telds the new partition J3 — 18,10 g} Wifclh ;

Route 1 2 3 45 6 7 8 9 10 11 12 13 14 15
c; 8 10 4 42 14 10 8 8 10 11 12 6 6 5
-18 -22 -1 -10 0-081202 08 -02 =22 0-1 O T3 =1
o —22 -1 0-62 -7 -6 08 =32 -22 -3 -1-3 T10 =1
0 —6 -10 —4 -3 T5 =1

Using the row prices p° = (5.3, 7.1, 2.9, 2.7, 2) we find that all potential
savings are negative, so the partition J? is optimal.

Route 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cj 8§ 10 4 4 2 14 10 8 g8 10 11 12 6 6 5
o; -27-29-11-13 0-16-18 0-07 0-12-29-04-11-03

When the problems become very large, it is necessary to adopt more
sophisticated approaches, namely branch-and-bound, branch-and-price, and
branch-cut-and-price. The bounding techniques in branch-and-bound are of-
ten based on a technique called Lagrangean Relaxation. Branch-cut-and-price
combines branching with so-called cutting planes techniques and has been
used to solve real world problems arising in the airlines industry with consid-
erable success.

13.7 Operator Scheduling in a Call Center

In every large organization that has a help line or a toll free number, there is
a concern with regard to the quality of service. This is measured by the time
it takes a caller to get an operator on the line, or, in the case of a conversant
system that responds to digital input, by the time it takes the caller to get
an appropriate person on the line.

Companies often have detailed statistics with regard to the frequencies of
past requests for service. These statistics typically are broken down according
to the time of day, the day of the week, and the type of service requested.
Figure 13.2 depicts statistics with regard to calls for operators in a call center.

In this section we describe the design and development of an operator
scheduling system for a call center. The objective is to determine a set of
shifts and assignment of tasks within the shifts, so that the requirement curves
are matched as closely as possible by the availability of operators. The shift
configurations that are allowed have a certain structure. These structures are
often referred to as tour templates and are characterized by their start times,
finish times, and the number, length and timing of non-work periods. The
time unit is 15 minutes (a coffee break 'is in this case one time unit and a
lunch break is anywhere from two to four units). Different templates j and k
can be of the same type i. A type is characterized by the time between start

!
§
s
§
¢
:

Requirements
g
>
=
o,
£
&
o -
o r =
"
E I_l L -— L, Service 2
r____I"U’ |_|'| ~ LL___
n = L
L il | Tty (i
6 AM 10 AM 2PM 6 PM 10 PM

Fig. 13.2. Statistics with Regard to Calls for Operators at a Telephone Company

[Jrype1
0 Type 2

B Type 4
B 1ype s
-Type 6

0 20 40
. 60
Time period 80

Fig. 13.3. Space of Tour Template Types

and finish, but not by the timing of the non-work periods. A sample of the
tour template types is depicted in Figure 13.3.

The problem is simplified by assuming that none of the variables (e.g., the
numb.er of operators available, the call frequencies, and so on) change 'W-i7thin
any given time unit. So for each 15 minute period the demand as well as the
number of operators are fixed. Because of this simplification, each term in an
one of the performance measures is a sum rather than an iﬁtegral ’

To describe the objectives formally, we need the following notat.ion Let z;
('lenote the number of tours of template j and ¢; the cost of a tour of te;m Iat(je
J: Let a; and b; denote the starting time and the finishing time of template
J- Let m; denote the number of tours of type 4. Let y(k,t) be 1if tour kpis at

work at time ¢ and 0 otherwise and s(t) the number of operators available at
time ¢, i.e., the exact supply at time ¢. Let e(t) denote the difference between

the supply and the demand, e (?) the negative part (the shortage), i.e.,
e (t) = max(0, —e(t)),

and eT (t) the positive part (the surplus), i.c.,
e (t) = max(0, e(t)).

Based on this, a number of precise performance measures cai be defined that
take everything into account including coffee breaks. Let F denote the fitness
measure defined as

H H

F=v Y e)+t) e(t),

t=1 t=1

where ¥~ and ¥ denote the respective penalty costs and H denotes the
number of time units. Let C denote the cost measure

C:f+ZCjLL‘j

M

and £ the smoothness measure

H
L= Z e(t)?.

t=1

The overall framework of the approach adopted in the system is depicted
in Figure 13.4. The optimization process is divided into a number of modules.
The solid tour selection module is based on a mathematical program. In the
solid tour selection the breaks in the tours are not taken into consideration.
If there are no side constraints then this mathematical program is equivalent
to a network flow problem.

The break placement module attempts to minimize L subject to all break
placement rules. This procedure operates in a sequential manner. It finds and
places a break in a tour with a maximum decrease in £. This is repeated
for all tours and breaks and for all break hierarchies. The target demand
modification module attempts to minimize the fitness measure.

A number of side constraints have to be satisfied. There are bounds on
tour types and on the total number of tours. Moreover, there are constraints
on the tightness of the fit during certain critical periods. With these side
constraints, the optimization problem in the solid tour selection module is
no longer a simple network flow problem. One way of dealing with this more
complicated problem is the following. The original network flow formulation
can be replaced by a conventional linear programming formulation and the

Select
> Pla
solid tours breaclfs COffflpme
its
A
Modify n
target
demand
y

Fig. 13.4. Framework of the Approach in Operator Scheduling

s;lde .constraints can be incorporated as additional constraints.
t 1e h.near programming formulation of the solid tour selection yi
solution. When it does not, a simple rounding heuristic can rest

In most cases
elds an integer
ore integrality.

To describe the mathematical programming formulation of the solid tour

selection module in more detail additional notation is neede
module the breaks are not taken into account). Let D(¢)
demand for solid tours during time ¢; this targe
be somewhat higher than the actual demand for operators s

in time not all of them may be working. Let S(t)

during period ¢ (not taking into account that an operator may be on a break)

So
S(t) = Z Jij
J: te[ajvbj]
and
S(t) > s(t).
Let

E(t) = S(t) - D(),
E*(t) = max(E(t),0),
E™(t) = max(-E(t),0).

So E(t) denotes the amount of surplus at time ¢ and E*(t) and E~(t) denote

the positive and the negative part of this surplus. Let &+ (t) and ¥~ (t) denote

S[) C p y . p p
COStS a on
1 he € € ‘ 1ve e]lalt [; tlllle t I lle (0] ‘ lmlzal 1 I()bleIIl can now be

H

z}rﬁlrg_ Z (W_(t)E' (t) + !P+(t)E+(t)) + icjxj
i=1

t=1

d (since in this
denote the target
t demand for solid tours has to
ince at any point
denote the supply of tours

subject to
EY$)-E- @)= Y, =z-D@), t=1,...H

7: t€laj,bsl

N
ZZU]‘ <U
=

In addition, most of the variables have upper and lower bounds, i.e.,
gt < my < aPee j=1,...,N
0<KE(t)<E- ()™ t=1,...,H
0<ErY@t) <ET@)™™™ t=1,...,.H
mPm < omy; < mPe 1=1,...

The approach used here is much faster than implicit tour /break represen-
tation approaches, and can handle complex break placement rules.

The operator scheduling problem described here is a more complicated
version of the problem described in Section 13.3. The real life version is even
harder because of other issues that have to be taken into account. For exam-
ple, a company may have operators who speak only English and others who
speak both English and Spanish. So, some calls can be handled by either type
of operator and others by only one type of operator. In the terminology of
Chapter 2, the calls are the jobs and the operators are the machines; the M;
sets of the jobs are nested. The problems are further complicated by consider-
ation of labor agreements and personnel policies. An example of such a policy
is the FIFO rule, that is, if person A starts his shift earlier than person B,
then A’s first break cannot start later than B’s first break.

13.8 Discussion

It is interesting to compare the models in this chapter with the workforce
constrained scheduling and time-tabling models described in Section 9.4. The
jobs have to be scheduled in such a way that a certain objective, e.g., the
makespan, is minimized and at any point in time the demand for people
remains within the limit. So, there is a flexibility in the scheduling of the jobs.
In this chapter, the models are somewhat different. There is no flexibility in
the requirements, since these are given. However, the size of the workforce
and the number of people in each shift are the variables.

In practice, personnel scheduling problems tend to be intertwined with
other factory scheduling problems. For example, when it is evident that com-
mitted shipping dates cannot be met, extra shifts have to be put in, or overtime
has to be scheduled.

In the literature, these more aggregate problems (integrating machine
scheduling and personnel scheduling) have not yet been considered. However,
a number of scheduling systems, that are currently available on the market,
offer machine scheduling features together with shift scheduling features.

KExercises

13.1). J(_ﬂ?onsider the model described in Section 13.2

a) Explain how algori in ar i

- algorithm 13.2.1 may result in an optimal schedule that ig
b) Develop a method to com
| pute the numb i

optimal el petho mber of weeks in the cycle of an
c) Are all optimal schedules cyclic?

13.2. Consider Example 13.2.3. Note that the schedule has the disadvantage

that there is a 1-day workstretch (e.g., employee 3 works in week 1 on Monday, -
L P

while he is off on § . ’
days, on Sunday and Tuesday). Consider the following list of paired

Pair 1: Monday - Wednesday;
Pair 2: Tuesday - Thursday;
Pair 3: Tuesday - Wednesday.

Work out the new schedule and observe that the schedule has minimum 2-

day and maximum 5-da i
distributed y workstretches. However, the surplus is less evenly

13.3. Consider the days-off schedulin i
: g model of Sect . i
with the following daily requirements. “Hion 132 an the instance

day 7 1 2 3 4 5 6 7
Sun. Mon. Tues. Wed. Thurs. Fri. Sat.
Requirement 3 5 7 5 5 7 3

Each person requires 3 t of ;
this foen q out of the 5 weekends off. Apply Algorithm 13.2.1 to

13.4. Consider the days-off schedulin i
. g model of Sect i
with the following daily requirements. Feton 132 and the instance

day j 1 2 3 4 5 6 7
Sun. Mon. Tues. Wed. Thurs. Fri. Sat.
Requirement 1 7 7 7 10 11 3

Each person requires at least 1 out
of e .
13.2.1 to this instance. very 2 weekends off. Apply Algorithm

13.5. Consider a retail store that i ;
s open for busi
There are five shift patterns siness from 10 a.m. to 8§ p.m.

pattern Hours of Work Total Hours Cost

1 10 a.m. to 6 p.m. 8 $ 50.00
2 1 p.m. to 9 p.m. 8 $ 60.00
3 12 p.m. to 6 p.m. 6 $ 30.00
4 10 a.m. to 1 p.m. 3 $ 15.00
5 6 p.m. to 8 p.m. 3 $ 16.00

Staffing requirements at the store varies from hour to hour.

Staffing
Hour Requirement
10 am. to 12 a.m. 3
12 a.m. to 2 p.m. 6
2 p.m. to 4 p.m. 7
4 pm. to 6 p.m. 7
4

6 p.m. to 8 p.m.

a) Formulate this problem as an integer program.
b) Solve the linear programming relaxation of this problem.
c) Is the solution obtained under b) optimal for the original problem?

13.6. Consider the instance described in Exercise 13.4. All the assumptions
are still in force with the exception of one. Assume now that each person
must work every other weekend and must have every other weekend off. (In
Exercise 13.4 it was possible for a person to have every weekend off.)

a) Formulate this instance as an integer program.

b) Solve the linear program relaxation of the integer program formulated.
Round off the answer to the nearest integers.

¢) Compare the solution obtained under b) with the solution obtained in

Exercise 13.4.

13.7. Consider the (5,7)-cyclic staffing problem with the A matrix as depicted
in Section 13.4. The b vector is (4,9,8,8,8,9,4). The first entry corresponds
to a Sunday and the last entry corresponds to a Saturday. The cost vector
(c1,.:.,¢7) is (6,5,6,7,7,7,7), i.e., the least expensive shift is the one that has

both Saturday and Sunday off.
Apply Algorithm 13.4.1. to find the optimal solution.

13.8. Consider Application (i) in Section 13.5.

(a) Compute the number of columns in the matrix.

(b) Compute the number of columns if one-day workstretches are not al-
lowed (a one day workstretch is a working day that is preceded and followed

by days-off).
(c) Compute the number of columns if one and two day workstretches are

not allowed.

13.9. Consider application (ii) in Section 13.5. Assume that the ¢ vector is
(1,1.25,1.5, 1.75,2,2.25,2.5, 2.75, 3,
1.5,1.75,2,2.25 2.5, 2.75,3,3.25,3.5,
2,2.25,2.5,2.75,3,3.25, 3.5,3.75,4)

The requirements vector b is

10,10,10,10,10,10, 10, 10, 8, 8,8,8,8,8,8,8,5,5,5,5,5, 5,5,5

Apply Algorithm 12.4.1 to this instance. (You will need a linear programming - -

code to do this, e.g., LINDO.)

13.10. Consider Example 13.6.2. In the second iteration the row prices
(6.2,7.8,3,3,2) are used. However, this is not the only set of feasible row
prices. Consider the set (7,7,3,3, 2), which is also feasible. Perform the next
iteration using this set of prices.

13.11. Consider a central depot and 5 clients. From the depot a single delivery
has to be made to each one of the clients. The routes that are allowed are
shown in the table below. The ob jective is to determine which truck should go
to each client and the routing that minimizes the total distance traveled. Each
column in the table represents a possible truck route and the ¢j represents
the total distance of the route.

Routel 2345 6 78 910111213
c; 810 4 4 21410 81112 6 6 5
1000011100000
0100010011000
0010001000110
0001000010101
0000100101011

Apply Algorithm 13.6.1 to this instance.

Comments and References

The elementary textbook by Nanda and Browne (1992) covers some (but not all) of
the models discussed in this chapter.

Section 12.2 is taken from Burns and Carter (1985) and is based on the seven
days per week, one shift per day model. Burns and Koop (1987) extend this work
and look at the seven days per week, multiple shifts per day model. Emmons (1985),
Emmons and Burns (1991) and Hung and Emmons (1993) consider related models.

The general integer programming formulation considered in Section 13.3 appears
in many handbooks and survey papers; see, for example, the survey papers by Tien
and Kamiyama (1982) and Burgess and Busby (1992).

r

The material presented in Sections 13.4 and 13.5 is primarily based on the paper
tholdi, Orlin and Ratliff (1980). ‘
>]'Bfa}fe corew scheduling heuristic presented in Section 13.6 comes from the paiper
by Cullen, Jarvis and Ratliff (1981). Many papers have focused on crew sche(il 1n§
yoblemS'ysee for example, Marsten and Shepardson (1981}, Bodin, Golden, dssat
prd Ball’(19873), and Stojkovic, Soumis, and Desrosiers (1998). A branch-an :1?1111
aJnethod applied to crew scheduling is described in Hoffman and Padberg (1993})1. e
:ilrline crew recovery problem is described in Lettovsky, Johnson, and Nemhauser
OO ’ . . - .
20 A)description of the operator scheduling system designed for a long dlsta‘nce
telephone company was presented at a national meeting of the INFORMS society

" in Washington, D.C., see Gawande (1996).

